70
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Natural Products That Protect Against Acetaminophen Hepatotoxicity: A Call for Increased Rigor in Preclinical Studies of Dietary Supplements

, BS, , MS, , M.D, PhD & , PhD

References

  • Abd Rashid N, Abd Halim SAS, Teoh SL, Budin SB, Hussan F, Adib Ridzuan NR, Abdul Jalil NA. 2021. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother. 144:112328. doi: 10.1016/j.biopha.2021.112328.
  • Abushanab D, Gasim M, Devi D, Elbdairy M, Elqasass H, Ahmed N, Vincent M, Abdul Rouf PV, Mohammed HR, Hail MA, et al. 2023. Patterns and outcomes of paracetamol poisoning management in Hamad Medical Corporation, Qatar: a retrospective cohort study. Medicine. 102(38):e34872.)doi: 10.1097/MD.0000000000034872.
  • Adelusi OB, Ramachandran A, Lemasters JJ, Jaeschke H. 2022. The role of iron in lipid peroxidation and protein nitration during acetaminophen-induced liver injury in mice. Toxicol Appl Pharmacol. 445:116043. doi: 10.1016/j.taap.2022.116043.
  • Altyar A, Kordi L, Skrepnek G. 2015. Clinical and economic characteristics of emergency department visits due to acetaminophen toxicity in the USA. BMJ Open. 5(9):e007368. doi: 10.1136/bmjopen-2014-007368.
  • Bai J, Cederbaum AI. 2004. Adenovirus mediated overexpression of CYP2E1 increases sensitivity of HepG2 cells to acetaminophen induced cytotoxicity. Mol Cell Biochem. 262(1-2):165–176. doi: 10.1023/b:mcbi.0000038232.61760.9e.
  • Bajt ML, Cover C, Lemasters JJ, Jaeschke H. 2006. Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci. 94(1):217–225. doi: 10.1093/toxsci/kfl077.
  • Bajt ML, Ramachandran A, Yan H-M, Lebofsky M, Farhood A, Lemasters JJ, Jaeschke H. 2011. Apoptosis-inducing factor modulates mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol Sci. 122(2):598–605. doi: 10.1093/toxsci/kfr116.
  • Baptista AB, Sarandy MM, Gonçalves RV, Novaes RD, Gonçalves da Costa C, Leite JPV, Peluzio MdCG 2020. Antioxidant and anti-inflammatory effects of Anacardium occidentale L. and Anacardium microcarpum D. extracts on the liver of IL-10 knockout mice. Evid Based Complement Alternat Med. 2020:3054521–3054513. doi: 10.1155/2020/3054521.
  • Bhushan B, Walesky C, Manley M, Gallagher T, Borude P, Edwards G, Monga SPS, Apte U. 2014. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am J Pathol. 184(11):3013–3025. doi: 10.1016/j.ajpath.2014.07.019.
  • Cao Y, Fang X, Sun M, Zhang Y, Shan M, Lan X, Zhu D, Luo H. 2023. Preventive and therapeutic effects of natural products and herbal extracts on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Phytother Res. 37(9):3867–3897. doi: 10.1002/ptr.7932.
  • Clemens MM, Kennon-McGill S, Apte U, James LP, Finck BN, McGill MR. 2019. The inhibitor of glycerol 3-phosphate acyltransferase FSG67 blunts liver regeneration after acetaminophen overdose by altering GSK3β and Wnt/β-catenin signaling. Food Chem Toxicol. 125:279–288. doi: 10.1016/j.fct.2019.01.014.
  • Copple IM, Goldring CE, Jenkins RE, Chia AJL, Randle LE, Hayes JD, Kitteringham NR, Park BK. 2008. The hepatotoxic metabolite of acetaminophen directly activates the keap1-Nrf2 cell defense system. Hepatology. 48(4):1292–1301. doi: 10.1002/hep.22472.
  • Cover C, Mansouri A, Knight TR, Bajt ML, Lemasters JJ, Pessayre D, Jaeschke H. 2005. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther. 315(2):879–887. doi: 10.1124/jpet.105.088898.
  • Craig DGN, Bates CM, Davidson JS, Martin KG, Hayes PC, Simpson KJ. 2012. Staggered overdose pattern and delay to hospital presentation are associated with adverse outcomes following paracetamol-induced hepatotoxicity. Br J Clin Pharmacol. 73(2):285–294. doi: 10.1111/j.1365-2125.2011.04067.x.
  • Craig DGN, Lee P, Pryde EA, Masterton GS, Hayes PC, Simpson KJ. 2011. Circulating apoptotic and necrotic cell death markers in patients with acute liver injury. Liver Int. 31(8):1127–1136. doi: 10.1111/j.1478-3231.2011.02528.x.
  • Davis M, Ideo G, Harrison NG, Williams R. 1975. Hepatic glutathione depletion and impaired bromosulphthalein clearance early after paracetamol overdose in man and the rat. Clin Sci Mol Med. 49(5):495–502. doi: 10.1042/cs0490495.
  • Du K, Jaeschke H. 2016. Liuweiwuling tablets protect against acetaminophen hepatotoxicity: what is the protective mechanism? World J Gastroenterol. 22(11):3302–3304. doi: 10.3748/wjg.v22.i11.3302.
  • Dufay S, Worsley A, Monteillier A, Avanzi C, Sy J, Ng TF, Garcia J-M, Lam M-F, Vanhoutte P, Wong ICK, et al. 2014. Herbal tea extracts inhibit cytochrome P450 3A4 in vitro. J Pharm Pharmacol. 66(10):1478–1490. doi: 10.1111/jphp.12270.
  • El-Bakry HA, El-Sherif G, Rostom RM. 2017. Therapeutic dose of green tea extract provokes liver damage and exacerbates paracetamol-induced hepatotoxicity in rats through oxidative stress and caspase 3-dependent apoptosis. Biomed Pharmacother. 96:798–811. doi: 10.1016/j.biopha.2017.10.055.
  • Eltelbany A, Hamid O, Nanah R, Paleti S. 2023. S1320 liver cleansing imposters: an analysis of popular online liver supplements. Am J Gastroenterol. 118(10S):S1008–S1009. doi: 10.14309/01.ajg.0000954920.30407.c4.
  • Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O’Connor T, Harada T, Yamamoto M. 2001. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci. 59(1):169–177. doi: 10.1093/toxsci/59.1.169.
  • Ewing LE, McGill MR, Yee EU, Quick CM, Skinner CM, Kennon-McGill S, Clemens M, Vazquez JH, McCullough SS, Williams DK, et al. 2019. Paradoxical patterns of sinusoidal obstruction syndrome-like liver injury in aged female CD-1 mice triggered by cannabidiol-rich cannabis extract and acetaminophen co-administration. Molecules. 24(12):2256. doi: 10.3390/molecules24122256.
  • Forrest JAH, Clements JA, Prescott LF. 1982. Clinical pharmacokinetics of paracetamol. Clin Pharmacokinet. 7(2):93–107. doi: 10.2165/00003088-198207020-00001.
  • Goldring CEP, Kitteringham NR, Elsby R, Randle LE, Clement YN, Williams DP, McMahon M, Hayes JD, Itoh K, Yamamoto M, et al. 2004. Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice. Hepatology. 39(5):1267–1276. doi: 10.1002/hep.20183.
  • Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. 2002. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci. 67(2):322–328. doi: 10.1093/toxsci/67.2.322.
  • Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N. 2006. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology. 131(1):165–178. doi: 10.1053/j.gastro.2006.03.045.
  • Hart SN, Li Y, Nakamoto K, Subileau EA, Steen D, Zhong XB. 2010. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab Dispos. 38(6):988–994. doi: 10.1124/dmd.109.031831.
  • Hinson JA, Roberts DW, Benson RW, Dalhoff K, Loft S, Poulsen HE. 1990. Mechanism of paracetamol toxicity. Lancet. 335(8691):732. doi: 10.1016/0140-6736(90)90851-u.
  • Hu X, Yang T, Li C, Zhang L, Li M, Huang W, Zhou P. 2013. Human fetal hepatocyte line, L-02, exhibits good liver function in vitro and in an acute liver failure model. Transplant Proc. 45(2):695–700. doi: 10.1016/j.transproceed.2012.09.121.
  • Ibrahim SRM, Sirwi A, Eid BG, Mohamed SGA, Mohamed GA. 2021. Summary of natural products ameliorate concanavalin A-induced liver injury: structures, sources, pharmacological effects, and mechanisms of action. Plants. 10(2):228. doi: 10.3390/plants10020228.
  • Jaeschke H. 1990. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol. J Pharmacol Exp Ther. 255(3):935–941.
  • Jaeschke H, McGill MR, Williams CD, Ramachandran A. 2011. Current issues with acetaminophen hepatotoxicity - a clinically relevant model to test the efficacy of natural products. Life Sci. 88(17-18):737–745. doi: 10.1016/j.lfs.2011.01.025.
  • Jaeschke H, Ramachandran A. 2020. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol. 138:111240. doi: 10.1016/j.fct.2020.111240.
  • Jaeschke H, Ramachandran A. 2022. Targeting the sterile inflammatory response during acetaminophen hepatotoxicity with natural products. Toxicol Lett. 355:170–171. doi: 10.1016/j.toxlet.2021.11.006.
  • Jaeschke H, Williams CD, McGill MR. 2012. Caveats of using acetaminophen hepatotoxicity models for natural product testing. Toxicol Lett. 215(1):40–41. doi: 10.1016/j.toxlet.2012.09.023.
  • Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A. 2013. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol. 55:279–289. doi: 10.1016/j.fct.2012.12.063.
  • Jagenburg OR, Toczko K. 1964. The metabolism of acetophenetidine. Isolation and characterization of S-(1-acetamido-4-hydroxyphenyl)-cysteine, a metabolite of acetophenetidine. Biochem J. 92(3):639–643. doi: 10.1042/bj0920639.
  • Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB. 1973. Acetaminophen induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther. 187(1):195–202.
  • Kawaguchi-Suzuki M, Frye RF, Zhu H-J, Brinda BJ, Chavin KD, Bernstein HJ, Markowitz JS. 2014. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity. Drug Metab Dispos. 42(10):1611–1616. doi: 10.1124/dmd.114.057232.
  • Kesavarapu K, Kang M, Shin JJ, Rothstein K. 2017. Yogi detox tea: a potential cause of acute liver failure. Case Rep Gastrointest Med. 2017:3540756. doi: 10.1155/2017/3540756.
  • Klein AV, Kiat H. 2015. Detox diets for toxin elimination and weight management: a critical review of the evidence. J Hum Nutr Diet. 28(6):675–686. doi: 10.1111/jhn.12286.
  • Knight TR, Fariss MW, Farhood A, Jaeschke H. 2003. Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice. Toxicol Sci. 76(1):229–236. doi: 10.1093/toxsci/kfg220.
  • Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H. 2001. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol Sci. 62(2):212–220. doi: 10.1093/toxsci/62.2.212.
  • Kon K, Kim JS, Jaeschke H, Lemasters JJ. 2004. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology. 40(5):1170–1179. doi: 10.1002/hep.20437.
  • Kwan R, Chen L, Park M-J, Su Z, Weerasinghe SVW, Lee WM, Durkalski-Mauldin VL, Fontana RJ, Omary MB. 2023. The role of carbamoyl phosphate synthetase 1 as a prognostic biomarker in patients with acetaminophen-induced acute liver failure. Clin Gastroenterol Hepatol. 21(12):3060.e8–3069.e8.
  • Lauterburg BH, Mitchell JR. 1987. Therapeutic doses of acetaminophen stimulate the turnover of cysteine and glutathione in man. J Hepatol. 4(2):206–211. doi: 10.1016/s0168-8278(87)80081-8.
  • Liu L, Klaassen CD. 1996. Different mechanism of saturation of acetaminophen sulfate conjugation in mice and rats. Toxicol Appl Pharmacol. 139(1):128–134. doi: 10.1006/taap.1996.0151.
  • Liu X, Chen C, Zhang X. 2020. Drug-drug interaction of acetaminophen and roxithromycin with the cocktail of cytochrome P450 and hepatotoxicity in rats. Int J Med Sci. 17(3):414–421. doi: 10.7150/ijms.38527.
  • Ma X, Jiang Y, Zhang W, Wang J, Wang R, Wang L, Wei S, Wen J, Li H, Zhao Y, et al. 2020. Natural products for the prevention and treatment of cholestasis: a review. Phytother Res. 34(6):1291–1309. doi: 10.1002/ptr.6621.
  • Manthripragada AD, Zhou EH, Budnitz DS, Lovegrove MC, Willy ME. 2011. Characterization of acetaminophen overdose-related emergency department visits and hospitalizations in the United States. Pharmacoepidemiol Drug Saf. 20(8):819–826. doi: 10.1002/pds.2090.
  • McGill MR. 2023. The role of mechanistic biomarkers in understanding acetaminophen hepatotoxicity in humans. Drug Metab Dispos. MD-MR-2023-001281. doi: 10.1124/dmd.123.001281.
  • McGill MR, Hinson JA. 2020. The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev. 52(4):472–500. doi: 10.1080/03602532.2020.1832112.
  • McGill MR, Jaeschke H. 2019. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis. 1865(5):1031–1039. doi: 10.1016/j.bbadis.2018.08.037.
  • McGill MR, Lebofsky M, Norris H-RK, Slawson MH, Bajt ML, Xie Y, Williams CD, Wilkins DG, Rollins DE, Jaeschke H, et al. 2013. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose-response, mechanisms, and clinical implications. Toxicol Appl Pharmacol. 269(3):240–249. doi: 10.1016/j.taap.2013.03.026.
  • McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H. 2012. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest. 122(4):1574–1583. doi: 10.1172/JCI59755.
  • McGill MR, Staggs VS, Sharpe MR, Lee WM, Jaeschke H, Acute Liver Failure Study Group. 2014. Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome. Hepatology. 60(4):1336–1345. doi: 10.1002/hep.27265.
  • McGill MR, Williams CD, Xie Y, Ramachandran A, Jaeschke H. 2012. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol. 264(3):387–394. doi: 10.1016/j.taap.2012.08.015.
  • McGill MR, Yan HM, Ramachandran A, Murray GJ, Rollins DE, Jaeschke H. 2011. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology. 53(3):974–982. doi: 10.1002/hep.24132.
  • Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB. 1973. Acetaminophen induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther. 187(1):185–194.
  • Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB. 1973. Acetaminophen induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther. 187(1):211–217.
  • Nakagawa H, Maeda S, Hikiba Y, Ohmae T, Shibata W, Yanai A, Sakamoto K, Ogura K, Noguchi T, Karin M, et al. 2008. Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology. 135(4):1311–1321. doi: 10.1053/j.gastro.2008.07.006.
  • Nguyen NT, Du K, Akakpo JY, Umbaugh DS, Jaeschke H, Ramachandran A. 2021. Mitochondrial protein adduct and superoxide generation are prerequisites for early activation of c-jun N-terminal kinase within the cytosol after an acetaminophen overdose in mice. Toxicol Lett. 338:21–31. doi: 10.1016/j.toxlet.2020.12.005.
  • Nguyen NT, Umbaugh DS, Smith S, Adelusi OB, Sanchez-Guerrero G, Ramachandran A, Jaeschke H. 2023. Dose-dependent pleiotropic role of neutrophils during acetaminophen-induced liver injury in male and female mice. Arch Toxicol. 97(5):1397–1412. doi: 10.1007/s00204-023-03478-4.
  • Niazi B, Ahmed K, Ahmed M, Ali S, Song K, Elias S. 2022. Drug-induced liver injury from herbal liver detoxification tea. Case Rep Gastroenterol. 16(3):612–617. doi: 10.1159/000526311.
  • Pholmoo N, Bunchorntavakul C. 2019. Characteristics and outcomes of acetaminophen overdose and hepatotoxicity in Thailand. J Clin Transl Hepatol. 7(2):132–139. doi: 10.14218/JCTH.2018.00066.
  • Placke ME, Ginsberg GL, Wyand DS, Cohen SD. 1987. Ultrastructural changes during acute acetaminophen-induced hepatotoxicity in the mouse: a time and dose study. Toxicol Pathol. 15(4):431–438. doi: 10.1177/019262338701500407.
  • Potter WZ, Davis DC, Mitchell JR, Jollow DJ, Gillette JR, Brodie BB. 1973. Acetaminophen induced hepatic necrosis. III. Cytochrome P 450 mediated covalent binding in vitro. J Pharmacol Exp Ther. 187(1):203–210.
  • Ramachandran A, Jaeschke H. 2020. A mitochondrial journey through acetaminophen hepatotoxicity. Food Chem Toxicol. 140:111282. doi: 10.1016/j.fct.2020.111282.
  • Randle LE, Goldring CEP, Benson CA, Metcalfe PN, Kitteringham NR, Park BK, Williams DP. 2008. Investigation of the effect of a panel of model hepatotoxins on the Nrf2-Keap1 defence response pathway in CD-1 mice. Toxicology. 243(3):249–260. doi: 10.1016/j.tox.2007.10.011.
  • Raskovic A, Bukumirovic N, Kusturica MP, Milic N, Cabarkapa V, Borišev I, Čapo I, Miljković D, Stilinović N, Mikov M. 2019. Hepatoprotective and antioxidant potential of Pycnogenol® in acetaminophen-induced hepatotoxicity in rats. Phytother Res. 33(3):631–639.
  • Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA. 2005. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther. 312(2):509–516. doi: 10.1124/jpet.104.075945.
  • Rumack BH, Peterson RC, Koch GG, Amara IA. 1981. Acetaminophen overdose: 662 cases with evaluation of oral acetylcysteine treatment. Arch Intern Med. 141(3 Spec No):380–385. doi: 10.1001/archinte.1981.00340030112020.
  • Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH. 1988. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. N Engl J Med. 319(24):1557–1562. doi: 10.1056/NEJM198812153192401.
  • Sridar C, Goosen TC, Kent UM, Williams JA, Hollenberg PF. 2004. Silybin inactivates cytochromes P450 3A4 and 2C9 and inhibits major hepatic glucuronosyltransferases. Drug Metab Dispos. 32(6):587–594. doi: 10.1124/dmd.32.6.587.
  • Stravitz RT, Lee WM. 2019. Acute liver failure. Lancet. 394(10201):869–881. doi: 10.1016/S0140-6736(19)31894-X.
  • Thapliyal R, Maru GB. 2001. Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem Toxicol. 39(6):541–547. doi: 10.1016/s0278-6915(00)00165-4.
  • Tone Y, Kawamata K, Murakami T, Higashi Y, Yata N. 1990. Dose-dependent pharmacokinetics and first-pass metabolism of acetaminophen in rats. J Pharmacobiodyn. 13(6):327–335. doi: 10.1248/bpb1978.13.327.
  • Watari N, Iwai M, Kaneniwa N. 1983. Pharmacokinetic study of the fate of acetaminophen and its conjugates in rats. J Pharmacokinet Biopharm. 11(3):245–272. doi: 10.1007/BF01061867.
  • Weerasinghe SVW, Jang YJ, Fontana RJ, Omary MB. 2014. Carbamoyl phosphate synthetase-1 is a rapid turnover biomarker in mouse and human acute liver injury. Am J Physiol Gastrointest Liver Physiol. 307(3):G355–G364. doi: 10.1152/ajpgi.00303.2013.
  • Win S, Than TA, Min RWM, Aghajan M, Kaplowitz N. 2016. c-Jun N-terminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src. Hepatology. 63(6):1987–2003. doi: 10.1002/hep.28486.
  • Wong LT, Whitehouse LW, Solomonraj G, Paul CJ. 1981. Pathways of disposition of acetaminophen conjugates in the mouse. Toxicol Lett. 9(2):145–151. doi: 10.1016/0378-4274(81)90031-x.
  • Xie Y, McGill MR, Dorko K, Kumer SC, Schmitt TM, Forster J, Jaeschke H. 2014. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol Appl Pharmacol. 279(3):266–274. doi: 10.1016/j.taap.2014.05.010.
  • Xie Y, McGill MR, Du K, Dorko K, Kumer SC, Schmitt TM, Ding W-X, Jaeschke H. 2015. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes. Toxicol Appl Pharmacol. 289(2):213–222. doi: 10.1016/j.taap.2015.09.022.
  • Ye F, Chen C, Qin J, Liu J, Zheng C. 2015. Genetic profiling reveals an alarming rate of cross-contamination among human cell lines used in China. FASEB J. 29(10):4268–4272. doi: 10.1096/fj.14-266718.
  • Yiew NKH, Vazquez JH, Martino MR, Kennon-McGill S, Price JR, Allard FD, Yee EU, Layman AJ, James LP, McCommis KS, et al. 2023. Hepatic pyruvate and alanine metabolism are critical and complementary for maintenance of antioxidant capacity and resistance to oxidative insult. Mol Metab. 77:101808. doi: 10.1016/j.molmet.2023.101808.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.