1,453
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Compression fatigue of elastomeric foams used in midsoles of running shoes

, , , &
Pages 93-103 | Received 03 May 2023, Accepted 08 Feb 2024, Published online: 06 Mar 2024

References

  • Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., & Sebastian Seung, H. (2017). Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics (Oxford, England), 33(15), 2424–2426. https://doi.org/10.1093/bioinformatics/btx180
  • Arkema. (n.d). Peebax. Retrieved 26 October 2022, from https://hpp.arkema.com/en/product/-families/pebax/-elastomer/-family/
  • Atwater, A. (1990). Gender differences in distance running. Biomechanics of distance running (pp. 321–362). Human Kinetics Books
  • Aurilia, M., Piscitelli, F., Sorrentino, L., Lavorgna, M., & Iannace, e S. (2011). Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. European Polymer Journal, 47(5), 925–936. https://doi.org/10.1016/j.eurpolymj.2011.01.005
  • BASF. (2022). Elastollan® (TPU)—The thermoplastic polyurethane of BASF. Retrieved 26 October https://plastics-rubber.basf.com/global/en/performance_polymers/products/elastollan.html
  • Benedetti, M., Du Plessis, A., Ritchie, R. O., Dallago, M., Razavi, S. M. J., & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering: R: Reports, 144, 100606. https://doi.org/10.1016/j.mser.2021.100606
  • Brückner, K., Odenwald, S., Schwanitz, S., Heidenfelder, J., & Milani, T. (2010). Polyurethane-foam midsoles in running shoes—Impact energy and damping. Procedia Engineering, 2(2), 2789–2793. https://doi.org/10.1016/j.proeng.2010.04.067
  • Carotenuto, C., Liana, P. P., Luigi, G., & Et Mario, M. (2019). Viscoelasticity evolution of ethylene-vinyl-acetate copolymers during crystallization. Chemical Engineering Transactions, 74, 1093–1098. https://doi.org/10.3303/CET1974183
  • Cavanagh, P. R., & Kram, R. (1989). Stride length in distance running: Velocity, body dimensions, and added mass effects. Medicine and Science in Sports and Exercise, 21(4), 467–479.
  • Chalencon, F., Dumont, P. J. J., Orgéas, L., Foray, G., Cavaillé, J.-Y., Maire, E., & Rolland Du, R. (2010). Lubricated compression and X-ray microtomography to analyse the rheology of a fibre-reinforced mortar. Rheologica Acta, 49(3), 221–235. https://doi.org/10.1007/s00397-009-0393-5
  • Chambon, N., Delattre, N., Berton, E., Gueguen, N., & Rao, G. (2013). The effect of shoe drop on running pattern. Footwear Science, 5(1), S106–S107. https://doi.org/10.1080/19424280.2013.799585
  • Chambon, N., Delattre, N., Guéguen, N., Berton, E., & Rao, G. (2014). Is midsole thickness a key parameter for the running pattern? Gait & Posture, 40(1), 58–63. https://doi.org/10.1016/j.gaitpost.2014.02.005
  • Chen, S. C., Lee, K. H., Chang, C. W., Hsu, T. J., & Feng, C. T. (2022). Using gas counter pressure and combined technologies for microcellular injection molding of thermoplastic polyurethane to achieve high foaming qualities and weight reduction. Polymers, 14(10), 2017. https://doi.org/10.3390/polym14102017
  • Clarke, T. E., Frederick, E. C., & Cooper, L. B. (1983). Effects of shoe cushioning upon ground reaction forces in running. International Journal of Sports Medicine, 4(4), 247–251. https://doi.org/10.1055/s-2008-1026043
  • Cornwall, M. W., & McPoil, T. G. (2017). Can runners perceive changes in heel cushioning as the shoe ages with increase mileage ? International Journal of Sports Physical Therapy, 12(4), 616–624.
  • Diani, J. (2021). Free vibrations of linear viscoelastic polymer cantilever beams. Comptes Rendus. Mécanique, 348(10–11), 797–806. https://doi.org/10.5802/crmeca.15
  • Doube, M., Kłosowski, M. M., Arganda-Carreras, I., Cordelières, F., Dougherty, R., Jackson, J. S., Schmid, B., Hutchinson, J. R., & Shefelbine, S. J. (2010). BoneJ: Free and extensible bone image analysis in ImageJ. Bone, 47(6), 1076–1079. https://doi.org/10.1016/j.bone.2010.08.023
  • Flores, N., Rao, G., Berton, E., & Delattre, N. (2019). The stiff plate location into the shoe influences the running biomechanics. Sports Biomechanics, 20(7), 815–830. https://doi.org/10.1080/14763141.2019.1607541
  • Franz, J. R., Wierzbinski, C. M., & Kram, R. (2012). Metabolic cost of running barefoot versus shod: Is lighter better? Medicine and Science in Sports and Exercise, 44(8), 1519–1525. https://doi.org/10.1249/MSS.0b013e3182514a88
  • Frederick, E. C. (1984). Sport shoes and playing surfaces. Human Kinetics.
  • Frederick, E. C., E. T. Howley, et S. K. Powers (1986) Lower Oxygen Demands of Running in Soft-Soled Shoes. Research Quarterly for Exercise and Sport 57, 2, 174–77. https://doi.org/10.1080/02701367.1986.10762196.
  • Fuller, J. T., Bellenger, C. R., Thewlis, D., Tsiros, M. D., & Buckley, J. D. (2015). The effect of footwear on running performance and running economy in distance runners. Sports Medicine (Auckland, N.Z.), 45(3), 411–422. https://doi.org/10.1007/s40279-014-0283-6
  • Gadot, B., Riu Martinez, O., Rolland Du Roscoat, S., Bouvard, D., Rodney, D., & Orgéas, L. (2015). Entangled single-wire NiTi material: A porous metal with tunable superelastic and shape memory properties. Acta Materialia, 96, 311–323. https://doi.org/10.1016/j.actamat.2015.06.018
  • Gibson, I. J., & Ashby, M. F. (1982). The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382(1782), 43–59. https://doi.org/10.1098/rspa.1982.0088
  • Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: Structure and properties. Cambridge University Press. https://doi.org/10.1017/CBO9781139878326
  • Guiraud, O., Dumont, P. J. J., Orgéas, L., & Favier, D. (2012). Rheometry of compression moulded fibre-reinforced polymer composites: rheology, compressibility, and friction forces with mould surfaces. Composites Part A: Applied Science and Manufacturing, 43(11), 2107–2119. https://doi.org/10.1016/j.compositesa.2012.06.006
  • Hoogkamer, W., Kipp, S., Spiering, B. A., & Kram, R. (2016). Altered running economy directly translates to altered distance-running performance. Medicine and Science in Sports and Exercise, 48(11), 2175–2180. https://doi.org/10.1249/MSS.0000000000001012
  • Kinoshita, H., & Bates, B. T. (1996). The effect of environmental temperature on the properties of running shoes. Journal of Applied Biomechanics, 12(2), 258–268. https://doi.org/10.1123/jab.12.2.258
  • Le Cam, J. B., Huneau, B., & Verron, E. (2008). Description of fatigue damage in carbon black filled natural rubber. Fatigue & Fracture of Engineering Materials & Structures, 31(12), 1031–1038. https://doi.org/10.1111/j.1460-2695.2008.01293.x
  • Le Saux, V., Marco, Y., Calloch, S., Doudard, C., Charrier, P. (2010) Fast Evaluation of the Fatigue Lifetime of Elastomers Based on a Heat Build-up Protocol and Micro-tomography Measurements, International Journal of Fatigue, 32(10), 1582–90. https://doi.org/10.1016/j.ijfatigue.2010.02.014
  • Li, T. T., Wang, H., Huang, S.-Y., Lou, C.-W., & Lin, J.-H. (2019). Bioinspired foam composites resembling pomelo peel: Structural design and compressive, bursting and cushioning properties. Composites Part B: Engineering, 172, 290–298. https://doi.org/10.1016/j.compositesb.2019.04.046
  • Lippa, N., Hall, E., Piland, S., Gould, T., & Rawlins, J. (2014). Mechanical ageing protocol selection affects macroscopic performance and molecular level properties of Ethylene Vinyl Acetate (EVA) running shoe midsole foam. Procedia Engineering, 72, 285–291. https://doi.org/10.1016/j.proeng.2014.06.082
  • Loo, M.S., Le Cam, J.-B., Andriyana, A., Robin, E., Coulon, J.-F. (2016) Effect of swelling on fatigue life of elastomers. Polymer Degradation and Stability, 124, 15–25 https://doi.org/10.1016/j.polymdegradstab.2015.12.001
  • Madden, R., Sakaguchi, M., Tomaras, E. K., Wannop, J. W., & Stefanyshyn, D. (2016). Forefoot bending stiffness, running economy and kinematics during overground running. Footwear Science, 8(2), 91–98. https://doi.org/10.1080/19424280.2015.1130754
  • Malisoux, L., Delattre, N., Urhausen, A., & Theisen, D. (2019). Shoe cushioning, body mass and running biomechanics as risk factors for running injury: A study protocol for a randomised controlled trial. BMJ Open, 7(8), e017379. https://doi.org/10.1136/bmjopen-2017-017379
  • Mills, N. (2007). Running shoe case study, Chapter 13. Polymer foams handbook (pp. 307–327). Kinetics Publ. Inc. https://doi.org/10.1016/B978-075068069-1/50014-3
  • Mullins, L. (1969). Softening of rubber by deformation. Rubber Chemistry and Technology, 42(1), 339–362. https://doi.org/10.5254/1.3539210
  • Musgjerd, T., Anason, J., Rutherford, D., & Kernozek, T. W. (2021). Effect of increasing running cadence on peak impact force in an outdoor environment. International Journal of Sports Physical Therapy, 16(4), 1076–1083. https://doi.org/10.26603/001c.25166
  • Mzabi, S., Berghezan, D., Roux, S., Hild, F., & Creton, C. (2011). A critical local energy release rate criterion for fatigue fracture of elastomers. Journal of Polymer Science Part B: Polymer Physics, 49(21), 1518–1524. https://doi.org/10.1002/polb.22338
  • Nigg, B. M. (Ed.). (1986). Biomechanics of running shoes. Human Kinetics.
  • Nigg, B. M., Baltich, J., Maurer, C., & Federolf, P. (2012). Shoe midsole hardness, sex and age effects on lower extremity kinematics during running. Journal of Biomechanics, 45(9), 1692–1697. https://doi.org/10.1016/j.jbiomech.2012.03.027
  • Oeveren, B. T. v., Ruiter, C. J. d., Beek, P. J., & Dieën, J. H. v (2017). Optimal stride frequencies in running at different speeds. PLoS One, 12(10), e0184273. https://doi.org/10.1371/journal.pone.0184273
  • Pardo-Alonso, S., Solórzano, E., Vicente, J., Brabant, L., Dierick, M. L., Manke, I., Hilger, A., Laguna, E., & Rodriguez-Perez, M. A. (2015). Micro-CT-based analysis of the solid phase in foams: Cell wall corrugation and other microscopic features. Microscopy and Microanalysis, 21(5), 1361–1371. https://doi.org/10.1017/S1431927615014890
  • Patterson, B. M., Cordes, N. L., Henderson, K., Williams, J. J., Stannard, T., Singh, S. S., Ovejero, A. R., Xiao, X., Robinson, M., & Chawla, N. (2016). In situ X-ray synchrotron tomographic imaging during the compression of hyper-elastic polymeric materials. Journal of Materials Science, 51(1), 171–187. https://doi.org/10.1007/s10853-015-9355-8
  • Rethnam, U., R., Makwana N. (2011) Are old running shoes detrimental to your feet? A pedobarographic study. BMC Research Notes 4, 1, 307. https://doi.org/10.1186/1756-0500-4-307.
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
  • Shen, Y., Golnaraghi, F., & Plumtree, A. (2001). Modelling compressive cyclic stress strain behaviour of structural foam. International Journal of Fatigue, 23(6), 491–497. https://doi.org/10.1016/S0142-1123(01)00014-7
  • Shimazaki, Y., Nozu, S., & Inoue, T. (2016). Shock-absorption properties of functionally graded EVA laminates for footwear design. Polymer Testing, 54, 98–103. https://doi.org/10.1016/j.polymertesting.2016.04.024
  • Silva, R. M., Rodrigues, J. L., Pinto, V. V., Ferreira, M. J., Russo, R., & Pereira, C. M. (2009). Evaluation of shock absorption properties of rubber materials regarding footwear applications. Polymer Testing, 28(6), 642–647. https://doi.org/10.1016/j.polymertesting.2009.05.007
  • Sinclair, J., R. Mcgrath, O. Brook, P. J. Taylor, et S. Dillon (2016) Influence of Footwear Designed to Boost Energy Return on Running Economy in Comparison to a Conventional Running Shoe, Journal of Sports Sciences 34(11), 1094 98. https://doi.org/10.1080/02640414.2015.1088961
  • Singaravelu, A. S. S., Williams, J. J., Ruppert, J., Henderson, M., Holmes, C., & Chawla, N. (2020). In situ X-ray microtomography of the compression behaviour of eTPU bead foams with a unique graded structure. Journal of Materials Science, 56(8), 5082–5099. https://doi.org/10.1007/s10853-020-05621-3
  • Sun, X., Lam, W.-K., Zhang, X., Wang, J., & Fu, W. (2020). Systematic review of the role of footwear constructions in running biomechanics: Implications for running-related injury and performance. Journal of Sports Science & Medicine, 19(1), 20–37.
  • Taunton, J. E., Ryan, M. B., Clement, D. B., McKenzie, D. C., Lloyd-Smith, D. R., & Zumbo, B. D. (2002). A retrospective case-control analysis of 2002 running injuries. British Journal of Sports Medicine, 36(2), 95–101. https://doi.org/10.1136/bjsm.36.2.95
  • Taylor, S. A., Fabricant, P. D., Michael Khair, M., Haleem, A. M., & Drakos, e M. C. (2012). A review of synthetic playing surfaces, the shoe-surface interface, and lower extremity injuries in athletes. The Physician and Sportsmedicine, 40(4), 66–72. https://doi.org/10.3810/psm.2012.11.1989
  • Taunton, J. E., Ryan, M., Clement, D., McKenzie, D., Lloyd-Smith, D., & Zumbo, B. (2003). A prospective study of running injuries: The vancouver sun run ‘in training’ clinics. British Journal of Sports Medicine, 37(3), 239–244. https://doi.org/10.1136/bjsm.37.3.239
  • Verdejo, R. (2004). Gas loss and durability of EVA foams used in running shoes [PhD thesis]. University of Birmingham. https://etheses.bham.ac.uk/id/eprint/231/.
  • Verdejo, R., & Mills, N. J. (2002). Performance of EVA foam in running shoes. The engineering of sport (Vol. 4, pp. 580–588). Blackwell Science.
  • Verdejo, R., & Mills, N. J. (2004a). Heel–shoe interactions and the durability of EVA foam running-shoe midsoles. Journal of Biomechanics, 37(9), 1379–1386. https://doi.org/10.1016/j.jbiomech.2003.12.022
  • Verdejo, R., & Mills, N. J. (2004b). Simulating the effects of long distance running on shoe midsole foam. Polymer Testing, 23(5), 567–574. https://doi.org/10.1016/j.polymertesting.2003.11.005
  • Worobets, Jay, John William Wannop, Elias Tomaras, et Darren Stefanyshyn (2014) Softer and more resilient running shoe cushioning properties enhance running economy, Footwear Science 6(3), 147 53, https://doi.org/10.1080/19424280.2014.918184.
  • Zhang, D., Scarpa, F., Ma, Y., Boba, K., Hong, J., & Lu, H. (2013). Compression mechanics of nickel-based superalloy metal rubber. Materials Science and Engineering: A, 580, 305–312. https://doi.org/10.1016/j.msea.2013.05.064