64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Vehicle trajectory prediction and collision warning for lane change conditions

, , , , , & show all

References

  • Abbas, M. T., Jibran, M. A., Afaq, M., & Song, W. ‐C. (2020). An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter. Transactions on Emerging Telecommunications Technologies, 31(5), e3734. https://doi.org/10.1002/ett.3734
  • Baek, M., Jeong, D., Choi, D., & Lee, S. (2020). Vehicle trajectory prediction and collision warning via fusion of multisensors and wireless vehicular communications. Sensors, 20(1), 288. https://doi.org/10.3390/s20010288
  • Choi, D., Yim, J., Baek, M., & Lee, S. (2021). Machine learning-based vehicle trajectory prediction using v2v communications and on-board sensors. Electronics, 10(4), 420. https://doi.org/10.3390/electronics10040420
  • Dai, X., Long, S., Zhang, Z., & Gong, D. (2019). Mobile robot path planning based on ant colony algorithm with A* heuristic method. Frontiers in Neurorobotics, 13, 15. https://doi.org/10.3389/fnbot.2019.00015
  • Ding, Y., Zhuang, W., Wang, L., Liu, J., Guvenc, L., & Li, Z. (2021). Safe and optimal lane-change path planning for automated driving. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(4), 1070–1083. https://doi.org/10.1177/0954407020913735
  • Guo, L., Jia, Y., Hu, X., & Dong, F. (2022). Forwarding collision assessment with the localization information using the machine learning method. Journal of Advanced Transportation, 2022, 1–10. https://doi.org/10.1155/2022/9530793
  • Han, B., Zhang, Y., Liu, Y., & Zhu, J. (2023). Collision avoidance warning algorithm based on spatiotemporal position prediction of vehicles at intersections. SAE International Journal of Connected and Automated Vehicles, 6(3), 297–307. https://doi.org/10.4271/12-06-03-0019
  • Hong, J., Wang, Z., Qu, C., Zhou, Y., Shan, T., Zhang, J., & Hou, Y. (2022). Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles. Applied Energy, 321(5), 119229. https://doi.org/10.1016/j.apenergy.2022.119229
  • Hsu, K. (2022). Obstacle avoidance path scheme of snake robot based on bidirectional fast expanding random tree algorithm. Journal of King Saud University – Science, 34(4), 101975. https://doi.org/10.1016/j.jksus.2022.101975
  • Huang, Y., Ding, H., Zhang, Y., Wang, H., Cao, D., Xu, N., & Hu, C. (2020). A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Transactions on Industrial Electronics, 67(2), 1376–1386. https://doi.org/10.1109/TIE.2019.2898599
  • Jiao, S., Zhang, S., Zhou, B., Zhang, Z., & Xue, L. (2020). An extended car-following model considering the drivers’ characteristics under a V2V communication environment. Sustainability, 12(4), 1552. https://doi.org/10.3390/su12041552
  • Ju, C., Wang, Z., Long, C., et al. (2020 Interaction-aware Kalman neural networks for trajectory prediction [Paper presentation]. 2020 IEEE Intelligent Vehicles Symposium (IV), IEEE, 1793–1800. https://doi.org/10.1109/IV47402.2020.9304764
  • Lee, M.-K., Park, Y.-S., Park, S., Lee, E., Park, M., & Kim, N.-E. (2021). Application of collision warning algorithm alarm in fishing vessel’s waterway. Applied Sciences, 11(10), 4479. https://doi.org/10.3390/app11104479
  • Li, H., Luo, Y., & Wu, J. (2019). Collision-free path planning for intelligent vehicles based on Bézier curve. IEEE Access, 7, 123334–123340. https://doi.org/10.1109/ACCESS.2019.2938179
  • Lin, L., Li, W., Bi, H., & Qin, L. (2022). Vehicle trajectory prediction using LSTMs with spatial–temporal attention mechanisms. IEEE Intelligent Transportation Systems Magazine, 14(2), 197–208. https://doi.org/10.1109/MITS.2021.3049404
  • Liu, X., Masoud, N., Zhu, Q., & Khojandi, A. (2022). A Markov decision process framework to incorporate network-level data in motion planning for connected and automated vehicles. Transportation Research Part C: Emerging Technologies, 136, 103550. https://doi.org/10.1016/j.trc.2021.103550
  • Lodh, S. S., Kumar, N., & Pandey, P. K. (2023). Autonomous vehicular overtaking maneuver: A survey and taxonomy. Vehicular Communications, 42, 100623. https://doi.org/10.1016/j.vehcom.2023.100623
  • Lyu, N., Wen, J., Duan, Z., & Wu, C. (2022). Vehicle trajectory prediction and cut-in collision warning model in a connected vehicle environment. IEEE Transactions on Intelligent Transportation Systems, 23(2), 966–981. https://doi.org/10.1109/TITS.2020.3019050
  • Ning, H., An, Y., Wei, Y., Wu, N., Mu, C., Cheng, H., & Zhu, C. (2023). Modeling and analysis of traffic warning message dissemination system in VANETs. Vehicular Communications, 39, 100566. https://doi.org/10.1016/j.vehcom.2022.100566
  • Sharma, O., Sahoo, N. C., & Puhan, N. B. (2021 Highway discretionary lane changing behavior recognition using continuous and discrete hidden Markov model [Paper presentation]. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), IEEE, 1476–1481. https://doi.org/10.1109/ITSC48978.2021.9564551
  • Shi, L., Hu, Y., Su, S., Guo, S., Xing, H., Hou, X., Liu, Y., Chen, Z., Li, Z., & Xia, D. (2020). A fuzzy PID algorithm for a novel miniature spherical robots with three-dimensional underwater motion control. Journal of Bionic Engineering, 17(5), 959–969. https://doi.org/10.1007/s42235-020-0087-3
  • Sun, Z., Zou, J., He, D., Man, Z., & Zheng, J. (2020). Collision-avoidance steering control for autonomous vehicles using neural network-based adaptive integral terminal sliding mode. Journal of Intelligent & Fuzzy Systems, 39(3), 4689–4702. https://doi.org/10.3233/JIFS-200625
  • Wang, R., Alazzam, M. B., Alassery, F., Almulihi, A., & White, M. (2021). Innovative research of trajectory prediction algorithm based on deep learning in car network collision detection and early warning system. Mobile Information Systems, 2021, 1–8. https://doi.org/10.1155/2021/3773688
  • Wang, Z., & Wang, J. (2020). Ultra-local model predictive control: A model-free approach and its application on automated vehicle trajectory tracking. Control Engineering Practice, 101, 104482. https://doi.org/10.1016/j.conengprac.2020.104482
  • Wei, C., Hui, F., Yang, Z., Jia, S., & Khattak, A. J. (2022). Fine-grained highway autonomous vehicle lane-changing trajectory prediction based on a heuristic attention-aided encoder-decoder model. Transportation Research Part C: Emerging Technologies, 140, 103706. https://doi.org/10.1016/j.trc.2022.103706
  • Wu, C., Lv, H., Zhu, T., Liu, Y., & Pessôa, M. V. P. (2022). Conceptual modeling of extended collision warning system from the perspective of smart product-service system. Sensors, 22(12), 4654. https://doi.org/10.3390/s22124654
  • Xie, G., Shangguan, A., Fei, R., Ji, W., Ma, W., & Hei, X. (2020). Motion trajectory prediction based on a CNN-LSTM sequential model. Science China Information Sciences, 63(11), 1–21. https://doi.org/10.1007/s11432-019-2761-y
  • Yang, W., Wan, B., & Qu, X. (2020). A forward collision warning system using driving intention recognition of the front vehicle and V2V communication. IEEE Access. 8, 11268–11278. https://doi.org/10.1109/ACCESS.2020.2963854
  • Yang, H., Xu, X., & Hong, J. (2023). Automatic Parking Path Planning of Tracked Vehicle Based on improved A* and DWA algorithms. IEEE Transactions on Transportation Electrification, 9(1), 283–292. https://doi.org/10.1109/TTE.2022.3199255
  • Yu, H., Zhao, C., Li, S., Wang, Z., & Zhang, Y. (2021). Pre-work for the birth of driver-less scraper (LHD) in the underground mine: The path tracking control based on an LQR controller and algorithms comparison. Sensors, 21(23), 7839. https://doi.org/10.3390/s21237839
  • Zhang, W., Gai, J., Zhang, Z., Tang, L., Liao, Q., & Ding, Y. (2019). Double-DQN based path smoothing and tracking control method for robotic vehicle navigation. Computers and Electronics in Agriculture, 166, 104985. https://doi.org/10.1016/j.compag.2019.104985
  • Zhao, X., Jing, S., Hui, F., Liu, R., & Khattak, A. J. (2019). DSRC-based rear-end collision warning system–An error-component safety distance model and field test. Transportation Research Part C: Emerging Technologies, 107, 92–104. https://doi.org/10.1016/j.trc.2019.08.002
  • Zhao, C., Song, A., Du, Y., & Yang, B. (2022). TrajGAT: A map-embedded graph attention network for real-time vehicle trajectory imputation of roadside perception. Transportation Research Part C: Emerging Technologies, 142, 103787. https://doi.org/10.1016/j.trc.2022.103787

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.