49
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Intrinsic low-frequency variability and predictability of the Kuroshio Current and of its extension

, &

References

  • H. Stommel, The westward intensification of wind-driven ocean currents, Trans. Amer. Geophys. Union 29 (1948), pp. 202–206.
  • W. Munk, On the wind-driven ocean circulation, J. Meteorol. 7 (1950), pp. 79–93.
  • J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed., Springer-Verlag, New York, 1987.
  • G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, Cambridge, 2006.
  • K.A. Kelly, R.J. Small, R.M. Samelson, B. Qiu, T.M. Joyce, Y. Kwon, and M.F. Cronin, Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension, J. Climate 23 (2010), pp. 5644–5667.
  • Y.-O. Kwon, M.A. Alexander, N.A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L.A. Thompson, Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review, J. Climate 23 (2010), pp. 3249–3281.
  • J. Lynch-Stieglitz, W.B. Curry, and N. Slowey, Weaker Gulf Stream in the Florida Straits during the last glacial maximum, Nature 402 (1999), pp. 644–648.
  • A. Ganopolski and S. Rahmstorf, Abrupt glacial climate changes due to stochastic resonance, Phys. Rev. Lett. 88 (2002), 038501, doi:10.1103/PhysRevLett.88.038501
  • M. Merino and A. Monreal, Ocean currents and their impact on marine life, in Marine Ecology, C.M. Duarte, ed., in Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of UNESCO, Eolss Publishers, Oxford, UK (2004), pp. 1–22.
  • N. Masayuki and I. Yasuda, Population decline of the Japanese sardine, Sardinops melanostictus, in relation to sea surface temperature in the Kuroshio Extension, Canadian J. Fish. Aquatic Sci. 56 (1999), pp. 973–983.
  • H. Nishikawa, I. Yasuda, and S. Itoh, Impact of winter-to-spring environmental variability along the Kuroshio jet on the recruitment of Japanese sardine (Sardinops melanostictus), Fisheries Oceanogr. 20 (2011), pp. 570–582.
  • S. Hito and S. Kimura, Transport and survival of larvae of pelagic fishes in Kuroshio system region estimated with Lagrangian drifters, Fish. Sci. 73 (2007), pp. 1295–1308.
  • B. Qiu, Kuroshio and Oyashio Currents, Encyclopedia of Ocean Sciences, Academic Press, 2001, pp. 1413–1425.
  • B. Qiu and W. Miao, Kuroshio path variations south of Japan: Bimodality as a self-sustained internal oscillation, J. Phys. Oceanogr. 30 (2000), pp. 2124–2137.
  • B.A. Taft, Characteristics of the flow of the Kuroshio south of Japan, in Kuroshio: Physical Aspects of the Japan Current, H. Stommel and K. Yoshida, eds., University of Tokyo Press (1972), pp. 165–216.
  • M. Kawabe, Sea level variations at the Izu Islands and typical stable paths of the Kuroshio, J. Oceanogr. 41 (1985), pp. 307–326.
  • M. Kawabe, Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander, J. Phys. Oceanogr. 25 (1995), pp. 3103–3117.
  • B. Qiu, The Kuroshio Extension system: Its large-scale variability and role in the midlatitude ocean-atmosphere interaction, J. Oceanogr. 58 (2002), pp. 57–75.
  • H.A. Dijkstra, Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, Kluwer Academic Publishers, Dordrecht, 2000.
  • H.A. Dijkstra and M. Ghil, Low-frequency variability of the large scale ocean circulation: A dynamical systems approach, Rev. Geophys. 43 (2005), RG3002, doi:10.1029/2002RG000122.
  • M.J. Schmeits and H.A. Dijkstra, Bimodality of the Kuroshio and the Gulf Stream, J. Phys. Oceanogr. 31 (2001), pp. 2971–2985.
  • S. Pierini, A Kuroshio Extension system model study: Decadal chaotic self-sustained oscillations, J. Phys. Oceanogr. 36 (2006), pp. 1605–1620.
  • S. Pierini, H.A. Dijkstra, and A. Riccio, A nonlinear theory of the Kuroshio Extension Bimodality, J. Phys. Oceanogr. 39 (2009), pp. 2212–2229.
  • Q. Wang, M. Mu, and H.A. Dijkstra, The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation, J. Geophys. Res. 118 (2013), pp. 869–884.
  • Q. Wang, M. Mu, and H.A. Dijkstra, Effects of nonlinear physical processes on optimal error growth in predictability experiments of the Kuroshio Large Meander, J. Geophys. Res. 118 (2013), pp. 6425–6436.
  • W. Kramer, H.A. Dijkstra, S. Pierini, and P.J. van Leeuwen, Measuring the impact of observations on the predictability of the Kuroshio extension in a shallow-water model, J. Phys. Oceanogr. 42 (2012), pp. 3–17.
  • M. Mu, H. Xu, and W. Duan, A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model, Geophys. Res. Lett. 34 (2007), L03709, doi:10.1029/2006GL027412.
  • Z.N. Jiang and D.H. Wang, A study on precursors to blocking anomalies in climatological flows by using conditional nonlinear optimal perturbations, Q. J. Roy. Meteor. Soc. 136 (2010), pp. 1170–1180.
  • F. Molteni, R. Buizza, T.N. Palmer, and T. Petroliagis, The ECMWF ensemble prediction system: Methodology and validation, Q. J. Roy. Meteor. Soc. 122 (1996), pp. 73–119.
  • Z. Toth and E. Kalnay, Ensemble forecasting at NCEP and the breeding method, Mon. Wea. Rev. 127 (1997), pp. 3297–3318.
  • P.J. Van Leeuwen, Particle filtering in geophysical systems, Mon. Wea. Rev. 137 (2009), pp. 4089–4114.
  • S. Pierini, Kuroshio Extension bimodality and the North Pacific oscillation: A case of intrinsic variability paced by external forcing, J. Climate 27 (2014), pp. 448–454.
  • S.E. Wijffels, M.M. Hall, T. Joyce, D.J. Torres, P. Hacker, and E. Firing, Multiple deep gyres of the western North Pacific: A WOCE section along 149°E, J. Geophys. Res. 103 (1998), pp. 12985–13009.
  • S.L. Hautala, D.H. Roemmich, and W.J. Schmitz Jr., Is the North Pacific in Sverdrup balance along 24°N?, J. Geophys. Res. 99 (1994), pp. 16041–16052.
  • S. Yosida, A note on the variations of the Kuroshio during recent years, Bull. Jpn. Soc. Fish. Oceanogr. 5 (1964), pp. 66–69.
  • M. Kawabe, Transition processes between the three typical paths of the Kuroshio, J. Oceanogr. Soc. Jpn. 42 (1986), pp. 174–191.
  • Q. Wang, M. Mu, and H.A. Dijkstra, Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander, Adv. Atmos. Sci. 29 (2012), pp. 118–134.
  • P. Cessi, G. Ierley, and W. Young, A model of the inertial recirculation driven by potential vorticity anomalies, J. Phys. Oceanogr. 17 (1987), pp. 1640–1652.
  • Y.-L. Chang and L.-Y. Oey, Interannual and seasonal variations of Kuroshio transport east of Taiwan inferred from 29 years of tide-gauge data, Geophys. Res. Lett. 38 (2011), L08603, doi:10.1029/2011GL047062
  • E.M. Douglass, S.R. Jayne, F.O. Bryan, S. Peacock, and M. Maltrud, Kuroshio pathways in a climatologically forced model, J. Oceanogr. 68 (2012), pp. 625–639.
  • M. Kurogi, H. Hasumi, and Y. Tanaka, Effects of stretching on maintaining the Kuroshio meander, J. Geophys. Res. 118 (2013), pp. 1182–1194.
  • B. Qiu, P. Hacker, S. Chen, K.A. Donohue, D. RandolphWatts, H. Mitsudera, N.G. Hogg, and S.R. Jayne, Observations of the subtropical mode water evolution from the Kuroshio Extension system study, J. Phys. Oceanogr. 36 (2006), pp. 457–473.
  • K. Wyrtki, L. Magaard, and J. Hagar, Eddy energy in the oceans, J. Geophys. Res. 81 (1976), pp. 2641–2646.
  • B. Qiu, Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field, J. Phys. Oceanogr. 30 (2000), pp. 1486–1502.
  • W.J. Schmitz Jr., P.P. Niiler, R.L. Bernstein, and W. R. Holland, Recent long-term moored instrument observations in the western North Pacific, J. Geophys. Res. 87 (1982), pp. 9425–9440.
  • Z.R. Hallock and W.J. Teague, Current meter observations during the Kuroshio Extension Regional Experiment, NRL Tech. Rep. MR/7332-95-7592, 1995.
  • K. Donohue, K. Donohue, D. Randolph Watts, K. Tracey, M. Wimbush, J.-H. Park, N. Bond, M. Cronin, S. Chen, B. Qiu, P. Hacker, N. Hogg, S. Jayne, J. McClean, L. Rainville, H. Mitsudera, Y. Tanimoto, and S.-P. Xie, Program studies the Kuroshio Extension, EOS, Trans. Amer. Geophys. Union, 89 (2008), pp. 161–162.
  • B. Qiu and S. Chen, Variability of the Kuroshio Extension jet, recirculation gyre and mesocale eddies on decadal time scales, J. Phys. Oceanogr. 35 (2005), pp. 2090–2103.
  • B. Qiu and S. Chen, Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system, Deep-Sea Res. II 57 (2010), pp. 1098–1110.
  • S. Pierini and H.A. Dijkstra, Low-frequency variability of the Kuroshio Extension, Nonlin. Processes Geophys. 16 (2009), pp. 665–675.
  • N.J. Mantua, S. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis, A Pacific interdecadal climate oscillation with impacts on salmon production, Bull. Am. Meteor. Soc. 78 (1997), pp. 1069–1079.
  • W.J. Teague, M.J. Carron, and P.J. Hogan, A comparison between the generalized digital environment model and Levitus climatologies, J. Geophys. Res. 95 (1990), pp. 7167–7183.
  • B. Taguchi, B. Qiu, M. Nonaka, H. Sasaki, S.-P. Xie, and N. Schneider, Decadal variability of the Kuroshio Extension: Mesoscale eddies and recirculations, Ocean Dyn. 60 (2010), pp. 673–691.
  • H.U. Sverdrup, Wind-driven currents in a baroclinic ocean with application to the equatorial current in the eastern Pacific, Proc. Natl. Acad. Sci. Wash. 33 (1947), pp. 318–326.
  • G. Veronis, An analysis of the wind-driven ocean circulation with a limited number of Fourier components, J. Atmos. Sci. 20 (1963), pp. 577–593.
  • P. Cessi and G.R. Ierley, Symmetry-breaking multiple equilibria in quasi-geostrophic, wind driven flows, J. Phys. Oceanogr. 25 (1995), pp. 1196–1205.
  • H.A. Dijkstra and C.A. Katsman, Temporal variability of the wind-driven quasigeostrophic double gyre ocean circulation: Basic bifurcation diagrams, Geophys. Astrophys. Fluid Dyn. 85 (1997), pp. 195–232.
  • H.A. Dijkstra and W.P.M. De Ruijter, Finite amplitude stability of the wind-driven ocean circulation, Geophys. Astrophys. Fluid Dyn. 83 (1996), pp. 1–31.
  • E. Simonnet and H.A. Dijkstra, Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation, J. Phys. Oceanogr. 32 (2002), pp. 1747–1762.
  • F.W. Primeau, Multiple equilibria and low-frequency variability of the wind-driven ocean circulation, J. Phys. Oceanogr. 32 (2002), pp. 2236–2256.
  • E. Simonnet, H.A. Dijkstra, and M. Ghil, Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation, J. Mar. Res. 63 (2005), pp. 931–956.
  • S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990.
  • S.P. Meacham, Low frequency variability of the wind-driven circulation, J. Phys. Oceanogr. 30 (2000), pp. 269–293.
  • B.T. Nadiga and B. Luce, Global bifurcation of Shilnikov type in a double-gyre model, J. Phys. Oceanogr. 31 (2001), pp. 2669–2690.
  • J.D. McCalpin and D.B. Haidvogel, Phenomenology of the low-frequency variability in a reduced gravity quasi-geostrophic double-gyre model, J. Phys. Oceanogr. 26 (1996), pp. 739–752.
  • K.-I. Chang, M. Ghil, K. Ide, and C.-C.A. Lai, Transition to aperiodic variability in a wind-driven double-gyre circulation model, J. Phys. Oceanogr. 31 (2001), pp. 1260–1286.
  • J. Nauw, H.A. Dijkstra, and E. Simonnet, Regimes of low-frequency variability in a three layer quasi-geostrophic model, J. Mar. Res. 62 (2004), pp. 685–720.
  • S. Pierini, On the crucial role of basin geometry in double-gyre models of the Kuroshio Extension, J. Phys. Oceanogr. 38 (2008), pp. 1327–1333.
  • B. Taguchi, S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast, J. Climate 20 (2007), pp. 2357–2377.
  • M. Nonaka, H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM, J. Climate 19 (2006), pp. 1970–1989.
  • M. Nonaka, H. Sasaki, B. Taguchi, and H. Nakamura, Potential predictability of interannual variability in the Kuroshio Extension jet speed in an eddy-resolving OGCM, J. Climate 25 (2012), pp. 3645–3652.
  • C.J. Thompson, Initial conditions for optimal growth in a coupled ocean-atmospheric model of ENSO, J. Atmos. Sci. 35 (1998), pp. 537–557.
  • Y. Tang, R. Kleeman, and S. Miller, ENSO predictability of a fully coupled GCM model using singular vector analysis, J. Climate 19 (2006), pp. 3361–3377.
  • M. Mu and Z.N. Jiang, Similarities between optimal precursors that trigger the onset of blocking events and optimally growing initial errors in onset prediction, J. Atmos. Sci. 68 (2011), pp. 2860–2877.
  • M. Mu, Nonlinear singular vectors and nonlinear singular values, Sci. China, Ser. D Earth Sci. 43 (2000), pp. 375–385.
  • M. Mu and J.C. Wang, Nonlinear fastest growing perturbation and the first kind of predictability, Sci. China, Ser. D Earth Sci. 44 (2001), pp. 1128–1139.
  • M. Mu, W.S. Duan, and B. Wang, Conditional nonlinear optimal perturbation and its applications, Nonlin. Processes Geophys. 10 (2003), pp. 493–501.
  • N. Komori, T. Awaji, Y. Ishikawa, and T. Kuragano, Short-range forecast experiments of the Kuroshio path variabilities south of Japan using TOPEX/Poseidon altimetric data, J. Geophys. Res. 108 (2003), doi:10.1029/2001JC001282.
  • M. Kamachi, T. Kuragano, S. Sugimoto, K. Yoshita, T. Sakurai, T. Nakano, N. Usui, and F. Uboldi, Short-range prediction experiments with operational data assimilation system for the Kuroshio south of Japan, J. Oceanogr. 60 (2004), pp. 269–282.
  • Y. Miyazawa, S. Yamane, X. Guo, and T. Yamagata, Ensemble forecast of the Kuroshio meandering, J. Geophys. Res. 110 (2005), doi: 10.1029/2004JC002426.
  • N. Usui, H. Tsujino, Y. Fujii, and M. Kamachi, Short-range prediction experiments of the Kuroshio path variabilities south of Japan, Ocean Dyn. 56 (2006), pp. 607–623.
  • Y. Ishikawa, T. Awaji, N. Komori, and T. Toyoda, Application of sensitivity analysis using an adjoint model for short-range forecasts of the Kuroshio path south of Japan, J. Oceanogr. 60 (2004), pp. 293–301.
  • Y. Fujii, H. Tsujino, N. Usui, H. Nakano, and M. Kamachi, Application of singular vector analysis to the Kuroshio large meander, J. Geophys. Res. 113 (2008), C07026, doi:10.1029/2007JC004476.
  • R. Buizza and A. Montani, Targeting observations using singular vectors, J. Atmos. Sci. 56 (1999), pp. 2965–2985.
  • C.H. Bishop, B.J. Etherton, and S.J. Majumdar, Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects, Mon. Wea. Rev. 129 (2001), pp. 420–436.
  • M. Mu, F.F. Zhou, and H.L. Wang, A method to identify the sensitive areas in targeting for tropical cyclone prediction: Conditional nonlinear optimal perturbation, Mon. Wea. Rev. 137 (2009), pp. 1623–1639.
  • A. Köhl and D. Stammer, Optimal observations for variational data assimilation, J. Phys. Oceanogr. 34 (2004), pp. 529–542.
  • J. Baehr, D. McInerney, K. Keller, and J. Marotzke, Optimization of an observing system design for the North Atlantic meridional overturning circulation, J. Atmos. Oceanic Technol. 25 (2008), pp. 625–634.
  • E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, Predictability in the large: An extension of the concept of Lyapunov exponent, J. Phys. A 30 (1997), doi:10.1088/0305–4470/30/1/003.
  • A. Crisanti, M. Falcioni, A. Vulpiani, and G. Paladin, Lagrangian chaos: Transport, mixing and diffusion in fluids, Riv. Nuovo Cimento 14 (1991), pp. 1–80.
  • A. Doucet, N. de Freitas, and N. Gordon (eds.), Sequential Monte Carlo Methods in Practice, Springer, New York, 2001.
  • T. Schneider and S.M. Griffies, A conceptual framework for predictability studies, J. Climate 12 (1999), pp. 3133–3155.
  • R. Kleeman, Measuring dynamical prediction utility using relative entropy, J. Atmos. Sci. 59 (2002), pp. 2057–2072.
  • Q. Xu, Measuring information content from observations for data assimilation: Relative entropy versus Shannon entropy difference, Tellus 59A (2006), pp. 198–209.
  • C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), pp. 370–423 and 623–656.
  • E.N. Lorenz, Climatic predictability, in The Physical Basis of Climate and Climate Modelling, B. Bolin, ed., GARP Publication Series, Vol. 16, World Meteorological Organization, Geneva, 1975, pp. 130–141.
  • S. Pierini, Coherence resonance in a double-gyre model of the Kuroshio Extension, J. Phys. Oceanogr. 40 (2010), pp. 238–248.
  • A.S. Pikovsky and J. Kurths, Coherence resonance in noise-driven excitable systems, Phys. Rev. Lett. 78 (1997), pp. 775–778.
  • S. Pierini, Low-frequency variability, coherence resonance and phase selection in a low-order model of the wind-driven ocean circulation, J. Phys. Oceanogr. 41 (2011), pp. 1585–1604.
  • S. Pierini, Stochastic tipping points in climate dynamics, Phys. Rev. E 85 (2012), 027101, doi:10.1103/PhysRevE.85.027101.
  • G.T. Walker and E.W. Bliss, World weather, V. Mem. R. Meteor. Soc. 4 (1932), pp. 53–84.
  • E. Di Lorenzo, E. Di Lorenzo, N. Schneider, K.M. Cobb, P.J.S. Franks, K. Chhak, A.J. Miller, J.C. McWilliams, S.J. Bograd, H. Arango, E. Curchitser, T.M. Powell, and P. Rivière, North Pacific Gyre Oscillation links ocean climate and ecosystem change, Geophys. Res. Lett. 35 (2008), L08607, doi:10.1029/2007GL032838.
  • K.C. Chhak, E. Di Lorenzo, N. Schneider, and P.F. Cummins, Forcing of low-frequency ocean variability in the northeast Pacific, J. Climate 22 (2009), pp. 1255–1276.
  • Y. Feliks, M. Ghil, and A.W. Robertson, The atmospheric circulation over the North Atlantic as induced by the SST field, J. Climate 24 (2011), pp. 522–542.
  • B. Qiu, S. Chen, N. Schneider, and B. Taguchi, A coupled decadal prediction of the dynamic state of the Kuroshio Extension system, J. Climate 27 (2014), pp. 1751–1764.
  • T. Penduff, M. Juza, B. Barnier, J. Zika, W.K. Dewar, A.-M. Treguier, J.-M. Molines, and N. Audiffren, Sea-level expression of intrinsic and forced ocean variabilities at interannual time scales, J. Climate 24 (2011), pp. 5652–5670.
  • G. Madec and the NEMO Team, NEMO ocean engine, Institut Pierre-Simon Laplace Note du Pôle de Modélisation, 2008, 27.
  • T. Penduff, M. Juza, L. Brodeau, G.C. Smith, B. Barnier, J.-M. Molines, A.-M. Treguier, and G. Madec, Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales, Ocean Sci. 6 (2010), pp. 269–284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.