247
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Artificial neural network analysis of the flow of nanofluids in a variable porous gap between two inclined cylinders for solar applications

, , , , &
Article: 2343418 | Received 02 Jan 2024, Accepted 08 Apr 2024, Published online: 23 Apr 2024

References

  • Ali, A., Ahammad, N. A., Tag-Eldin, E., Gamaoun, F., Daradkeh, Y. I., & Yassen, M. F. (2022). MHD Williamson nanofluid flow in the rheology of thermal radiation, Joule heating, and chemical reaction using the Levenberg–Marquardt neural network algorithm. Frontiers in Energy Research, 1175, 1–23.
  • Alnahdi, A. S., Khan, A., Gul, T., & Ahmad, H. (2024). Stagnation point nanofluid flow in a variable darcy space subject to thermal convection using artificial neural network technique. Arabian Journal for Science and Engineering, 1–18.
  • Aureen Albert, A., Harris Samuel, D. G., Parthasarathy, V., & Kiruthiga, K. (2020). A facile one pot synthesis of highly stable PVA–CuO hybrid nanofluid for heat transfer application. Chemical Engineering Communications, 207(3), 319–330. https://doi.org/10.1080/00986445.2019.1588731
  • Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Advanced Materials, 2(6), 1821–1871. https://doi.org/10.1039/D0MA00807A
  • Chamkha, A. J. (1996). Non-Darcy hydromagnetic free convection from a cone and a wedge in porous media. International Communications in Heat and Mass Transfer, 23(6), 875–887. https://doi.org/10.1016/0735-1933(96)00070-X
  • Chamkha, A. J. (1997). Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numerical Heat Transfer, Part A Applications, 32(6), 653–675. https://doi.org/10.1080/10407789708913911
  • Chamkha, A. J., Issa, C., & Khanafer, K. (2002). Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation. International Journal of Thermal Sciences, 41(1), 73–81. https://doi.org/10.1016/S1290-0729(01)01305-9
  • Chu, Y. M., Bashir, S., Ramzan, M., & Malik, M. Y. (2022). Model−based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Mathematical Methods in the Applied Sciences, 11568–11582.
  • Dezfulizadeh, A., Aghaei, A., Hassani Joshaghani, A., & Najafizadeh, M. M. (2021). Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu–SiO2−MWCNT ternary hybrid nanofluid based on empirical data. Journal of Thermal Analysis and Calorimetry, 147(7), 4781–4804. https://doi.org/10.1007/s10973-021-10867-3
  • Dogonchi, A. S., Chamkha, A. J., & Ganji, D. D. (2019). A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. Journal of Thermal Analysis and Calorimetry, 135(4), 2599–2611. https://doi.org/10.1007/s10973-018-7339-z
  • Gouran, S., Mohsenian, S., & Ghasemi, S. (2022). Theoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques. Alexandria Engineering Journal, 61(4), 3237–3248. https://doi.org/10.1016/j.aej.2021.08.047
  • Gul, T., Alharbi, S. O., Khan, I., Khan, M. S., & Alzahrani, S. (2023). Comparative analysis of the flow of the hybrid nanofluid stagnation point on the slippery surface by the CVFEM approach. Alexandria Engineering Journal, 76, 629–639. https://doi.org/10.1016/j.aej.2023.06.025
  • Gul, T., Ali, B., Alghamdi, W., Nasir, S., Saeed, A., Kumam, P., & Jawad, M. (2021). Mixed convection stagnation point flow of the blood based hybrid nanofluid around a rotating sphere. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-020-79139-8
  • Gul, T., Bilal, M., Alghamdi, W., Asjad, M. I., & Abdeljawad, T. (2021). Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Scientific Reports, 11(1), 1–19. https://doi.org/10.1038/s41598-020-79139-8
  • Gul, T., Nasir, S., Berrouk, A. S., Raizah, Z., Alghamdi, W., Ali, I., & Bariq, A. (2023). Simulation of the water-based hybrid nanofluids flow through a porous cavity for the applications of the heat transfer. Scientific Reports, 13(1), 7009. https://doi.org/10.1038/s41598-023-33650-w
  • Gumber, P., Yaseen, M., Rawat, S. K., & Kumar, M. (2022). Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects. Partial Differential Equations in Applied Mathematics, 5, 100240. https://doi.org/10.1016/j.padiff.2021.100240
  • Haider, F., Hayat, T., & Alsaedi, A. (2021). Flow of hybrid nanofluid through Darcy-Forchheimer porous space with variable characteristics. Alexandria Engineering Journal, 60(3), 3047–3056. https://doi.org/10.1016/j.aej.2021.01.021
  • Jarray, A., Mehrez, Z., & El Cafsi, A. (2019). Mixed convection Ag-MgO/water hybrid nanofluid flow in a porous horizontal channel. The European Physical Journal Special Topics, 228(12), 2677–2693. https://doi.org/10.1140/epjst/e2019-900068-8
  • Liu, T., Li, Y., Jing, Q., Xie, Y., & Zhang, D. (2021). Supervised learning method for the physical field reconstruction in a nanofluid heat transfer problem. International Journal of Heat and Mass Transfer, 165, 120684. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120684
  • Manjunatha, S., Kuttan, B. A., Jayanthi, S., Chamkha, A., & Gireesha, B. J. (2019). Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection. Heliyon, 5(4), https://doi.org/10.1016/j.heliyon.2019.e01469
  • Mishra, S. R., Baag, S., & Mohapatra, D. K. (2016). Chemical reaction and Soret effects on hydromagnetic micropolar fluid along a stretching sheet. Engineering Science and Technology, an International Journal, 19(4), 1919–1928. https://doi.org/10.1016/j.jestch.2016.07.016
  • Mohsenian, S., Gouran, S., & Ghasemi, S. E. (2022). Evaluation of weighted residual methods for thermal radiation on nanofluid flow between two tubes in presence of magnetic field. Case Studies in Thermal Engineering, 32, 101867. https://doi.org/10.1016/j.csite.2022.101867
  • Mukhtar, S., & Gul, T. (2023). Solar radiation and thermal convection of hybrid nanofluids for the optimization of solar collector. Mathematics, 11(5), 1175. https://doi.org/10.3390/math11051175
  • Öcal, S., Gökçek, M., Çolak, A. B., & Korkanç, M. (2021). A comprehensive and comparative experimental analysis on thermal conductivity of TiO 2-CaCO 3/Water hybrid nanofluid: Proposing new correlation and artificial neural network optimization. Heat Transfer Research, 52(17), https://doi.org/10.1615/HeatTransRes.2021039444
  • Peng, Y., Alsagri, A. S., Afrand, M., & Moradi, R. (2019). A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation. RSC Advances, 9(39), 22185–22197. https://doi.org/10.1039/C9RA03286J
  • Raja, M. A. Z., Shoaib, M., Khan, Z., Zuhra, S., Saleel, C. A., Nisar, K. S., & Khan, I. (2022). Supervised neural networks learning algorithm for three dimensional hybrid nanofluid flow with radiative heat and mass fluxes. Ain Shams Engineering Journal, 13(2), 101573. https://doi.org/10.1016/j.asej.2021.08.015
  • Raza, J., Mebarek-Oudina, F., & Chamkha, A. J. (2019). Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscipline Modeling in Materials and Structures, 15(4), 737–757. https://doi.org/10.1108/MMMS-07-2018-0133
  • Reddy, J. N. (2019). Introduction to the finite element method. McGraw-Hill Education.
  • Saeed, A., Jawad, M., Alghamdi, W., Nasir, S., Gul, T., & Kumam, P. (2021). Hybrid nanofluid flow through a spinning Darcy–Forchheimer porous space with thermal radiation. Scientific Reports, 11(1), 16708. https://doi.org/10.1038/s41598-021-95989-2
  • Said, Z., Sundar, L. S., Tiwari, A. K., Ali, H. M., Sheikholeslami, M., Bellos, E., & Babar, H. (2022). Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Physics Reports, 946, 1–94.
  • Shahzad, F., Jamshed, W., Nisar, K. S., Khashan, M. M., & Abdel-Aty, A. H. (2021). Computational analysis of Ohmic and viscous dissipation effects on MHD heat transfer flow of Cu-PVA Jeffrey nanofluid through a stretchable surface. Case Studies in Thermal Engineering, 26, 101148. https://doi.org/10.1016/j.csite.2021.101148
  • Sheikholeslami, M., Nimafar, M., & Ganji, D. (2017). Nanofluid heat transfer between two pipes considering Brownian motion using AGM. Alexandria Engineering Journal, 56(2), 277–283. https://doi.org/10.1016/j.aej.2017.01.032
  • Tijani, Y. O., Akolade, M. T., & Mohd Kasim, A. R. (2023). Transport features on bidirectional nanofluid flow with convective heating and variable darcy regime. Journal of Computational and Theoretical Transport, 1–20.
  • Tlau, L., & Ontela, S. (2022). Entropy analysis of hybrid nanofluid flow in a porous medium with variable permeability considering isothermal/isoflux conditions. Chinese Journal of Physics, 80, 239–252. https://doi.org/10.1016/j.cjph.2022.10.001
  • Waini, I., Ishak, A., & Pop, I. (2021). Multiple solutions of the unsteady hybrid nanofluid flow over a rotating disk with stability analysis. European Journal of Mechanics-B/Fluids, 94, 121–127. https://doi.org/10.1016/j.euromechflu.2022.02.011