Publication Cover
Mycology
An International Journal on Fungal Biology
Latest Articles
243
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Aspergillus fumigatus ctf1–a novel zinc finger transcription factor involved in azole resistance

, , , , , & show all
Received 24 Jan 2024, Accepted 08 Apr 2024, Published online: 23 Apr 2024

References

  • Akache B, Wu K, Turcotte B. 2001. Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucleic Acids Res. 29(10):2181–2190. doi: 10.1093/nar/29.10.2181.
  • Breivik ON, Owades JL. 1957. Yeast analysis, spectrophotometric semimicro determination of ergosterol in yeast. J Agric Food Chem. 5(5):360–363. doi: 10.1021/jf60075a005.
  • Caceres I, Khoury AA, Khoury RE, Lorber S, Oswald IP, Khoury AE, Atoui A, Puel O, Bailly JD. 2020. Aflatoxin biosynthesis and genetic regulation: a review. Toxins. 12(3):150. doi: 10.3390/toxins12030150.
  • Clinical and Laboratory Standards Institute. 2017. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. 3rd ed. Wayne, PA, USA: Clinical and Laboratory Standards Institute CLSI standard M38.
  • Coleman JJ, Mylonakis E, Finlay BB. 2009. Efflux in fungi: la pièce de résistance. PLoS Pathog. 5(6):e1000486. doi: 10.1371/journal.ppat.1000486.
  • Dagenais TR, Keller NP. 2009. Pathogenesis of Aspergillus fumigatus in invasive Aspergillosis. Clin Microbiol Rev. 22(3):447–465. doi: 10.1128/CMR.00055-08.
  • da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, Malavazi I, Perlin D, Park S, Anderson JB, Colombo AL, Arthington-Skaggs BA, Goldman MH, et al. 2004. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother. 48(11):4405–4413. doi: 10.1128/AAC.48.11.4405-4413.2004.
  • Douglas AP, Smibert OC, Bajel A, Halliday CL, Lavee O, McMullan B, Yong MK, van Hal SJ, Chen SCA, the Australasian Antifungal Guidelines Steering Committee. 2021. Consensus guidelines for the diagnosis and management of invasive aspergillosis. Intern Med J Suppl. 7(S7):143–176. doi: 10.1111/imj.15591.
  • Fernandes M, Keller NP, Adams TH. 1998. Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol Microbiol. 28(6):1355–1365. doi: 10.1046/j.1365-2958.1998.00907.x.
  • Fosses Vuong M, Hollingshead CM, Waymack JR. 2023. Aspergillosis. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  • Fuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF. 2018. Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett Appl Microbiol. 66(1):2–13. doi: 10.1111/lam.12820.
  • Gibbons JG, Beauvais A, Beau R, McGary KL, Latgé JP, Rokas A. 2012. Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell. 11(1):68–78. doi: 10.1128/EC.05102-11.
  • Gil-Durán C, Rojas-Aedo JF, Medina E, Vaca I, García-Rico RO, Villagrán S, Levicán G, Chávez R, Pöggeler S. 2015. The pcz1 gene, which encodes a Zn(II)2Cys6 protein, is involved in the control of growth, conidiation, and conidial germination in the filamentous fungus Penicillium roqueforti. PLoS One. 10(3):e0120740. doi: 10.1371/journal.pone.0120740.
  • Hagiwara D, Miura D, Shimizu K, Paul S, Ohba A, Gonoi T, Watanabe A, Kamei K, Shintani T, Moye-Rowley WS, et al. 2017. A novel Zn2-Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B expressions. PLoS Pathog. 13(1):e1006096. doi: 10.1371/journal.ppat.1006096.
  • Henze K, Martin W. 2003. Evolutionary biology: essence of mitochondria. Nature. 426(6963):127–128. doi: 10.1038/426127a.
  • Khan R, Ghazali FM, Mahyudin NA, Samsudin NIP. 2021. Aflatoxin biosynthesis, genetic regulation, toxicity, and control strategies: A review. J Fungi. 7(8):606. doi: 10.3390/jof7080606.
  • Klimova N, Yeung R, Kachurina N, Turcotte B. 2014. Phenotypic analysis of a family of transcriptional regulators, the zinc cluster proteins, in the human fungal pathogen Candida glabrata. G3 (Bethesda). 4(5):931–940. doi: 10.1534/g3.113.010199.
  • Kolaczkowska A, Goffeau A. 1999. Regulation of pleiotropic drug resistance in yeast. Drug Resist Updat. 2(6):403–414. doi: 10.1054/drup.1999.0113.
  • Konno Y, Suzuki K, Tanaka M, Shintani T, Gomi K. 2018. Chaperone complex formation of the transcription factor MalR involved in maltose utilization and amylolytic enzyme production in Aspergillus oryzae. Biosci Biotechnol Biochem. 82(5):827–835. doi: 10.1080/09168451.2018.1447359.
  • Kontoyiannis DP. 2000. Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother. 46(2):191–197. doi: 10.1093/jac/46.2.191.
  • Law CJ, Maloney PC, Wang DN. 2008. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol. 62(1):289–305. doi: 10.1146/annurev.micro.61.080706.093329.
  • MacPherson S, Larochelle M, Turcotte B. 2006. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev. 70(3):583–604. doi: 10.1128/MMBR.00015-06.
  • Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G. 2008. Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother. 62(6):1281–1284. doi: 10.1093/jac/dkn402.
  • Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. doi: 10.1042/BJ20081386.
  • Muszkieta L, Beauvais A, Pähtz V, Gibbons JG, Leberre VA, Beau R, Shibuya K, Rokas A, Francois JM, Kniemeyer O, et al. 2013. Investigation of Aspergillus fumigatus biofilm formation by various “omics” approaches. Front Microbiol. 4:13. doi: 10.3389/fmicb.2013.00013.
  • Nascimento AM, Goldman GH, Park S, Marras SAE, Delmas G, Oza U, Lolans K, Dudley MN, Mann PA, Perlin DS. 2003. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother. 47(5):1719–1726. doi: 10.1128/AAC.47.5.1719-1726.2003.
  • Nywening AV, Rybak JM, Rogers PD, Fortwendel JR. 2020. Mechanisms of triazole resistance in Aspergillus fumigatus. Environ Microbiol. 22(12):4934–4952. doi: 10.1111/1462-2920.15274.
  • Patterson TF, Thompson GR 3rd, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, et al. 2016. Practice guidelines for the diagnosis and management of Aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 63(4): e1–e60. doi: 10.1093/cid/ciw326.
  • Paul S, Diekema D, Moye-Rowley WS. 2017. Contributions of both ATP-binding cassette transporter and Cyp51A proteins are essential for azole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 61(5):e02748–16. doi: 10.1128/AAC.02748-16.
  • Pérez-Cantero A, López-Fernández L, Guarro J, Capilla J. 2020. Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents. 55(1):105807. doi: 10.1016/j.ijantimicag.2019.09.011.
  • Perlin DS, Shor E, Zhao Y. 2015. Update on antifungal drug resistance. Curr Clin Microbiol Rep. 2(2):84–95. doi: 10.1007/s40588-015-0015-1.
  • Picazo I, Etxebeste O, Requena E, Garzia A, Espeso EA. 2020. Defining the transcriptional responses of Aspergillus nidulans to cation/alkaline pH stress and the role of the transcription factor SltA. Microb Genom. 6(8):mgen000415. doi: 10.1099/mgen.0.000415.
  • Ries LNA, Pardeshi L, Dong Z, Tan K, Steenwyk JL, Colabardini AC, Ferreira Filho JA, de Castro PA, Silva LP, Preite NW, et al. 2020. The Aspergillus fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-protection, and virulence. PLOS Pathog. 16(7):e1008645. doi: 10.1371/journal.ppat.1008645.
  • Sadowski I, Costa C, Dhanawansa R. 1996. Phosphorylation of Ga14p at a single C-terminal residue is necessary for galactose-inducible transcription. Mol Cell biol. 16(9):4879–4887. doi: 10.1128/MCB.16.9.4879.
  • Schillig R, Morschhäuser J. 2013. Analysis of a fungus-specific transcription factor family, the Candida albicans zinc cluster proteins, by artificial activation. Mol Microbiol. 89(5):1003–1017. doi: 10.1111/mmi.12327.
  • Sen P, Gupta L, Vijay M, Sarin MV, Shankar J, Hameed S, Vijayaraghavan P. 2023. 4-Allyl-2-methoxyphenol modulates the expression of genes involved in efflux pump, biofilm formation and sterol biosynthesis in azole resistant Aspergillus fumigatus. Front Cell Infect Microbiol. 13:1103957. doi:10.3389/fcimb.2023.1103957.
  • Sen P, Vijay M, Kamboj H, Gupta L, Shankar J, Vijayaraghavan P. 2024. cyp51A mutations, protein modeling, and efflux pump gene expression reveals multifactorial complexity towards understanding aspergillus section nigri azole resistance mechanism. Sci Rep. 14(1):6156. doi: 10.1038/s41598-024-55237-9.
  • Shishodia SK, Tiwari S, Shankar J. 2019. Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology. 10(3):151–165. doi: 10.1080/21501203.2019.1574927.
  • Son YE, Cho HJ, Lee MK, Park HS, Han KH. 2020. Characterizing the role of Zn cluster family transcription factor ZcfA in governing development in two Aspergillus species. PLoS One. 15(2):e0228643. doi: 10.1371/journal.pone.0228643.
  • Szekely A, Johnson EM, Warnock DW. 1999. Comparison of E-test and broth microdilution methods for antifungal drug susceptibility testing of molds. J Clin Microbiol. 37(5):1480–1483. doi: 10.1128/JCM.37.5.1480-1483.1999.
  • Tan J, Zhang H, Sun Y, Gao L, Khursigara CM. 2023. Afu-Emi1 contributes to stress adaptation and voriconazole susceptibility in Aspergillus fumigatus. Microbiol Spectr. 11(3):e0095623. doi: 10.1128/spectrum.00956-23.
  • Vik A, Rine J. 2001. Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell biol. 21(19):6395–6405. doi: 10.1128/MCB.21.19.6395-6405.2001.
  • Xiong Q, Hassan SA, Wilson WK, Han XY, May GS, Tarrand JJ, Matsuda SPT. 2005. Cholesterol import by Aspergillus fumigatus and its influence on antifungal potency of sterol biosynthesis inhibitors. Antimicrob Agents Chemother. 49(2):518–524. doi: 10.1128/AAC.49.2.518-524.2005.
  • Yin WB, Amaike S, Wohlbach DJ, Gasch AP, Chiang YM, Wang CC, Bok J, Rohlfs M, Keller NP. 2012. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Mol Microbiol. 83(5):1024–1034. doi: 10.1111/j.1365-2958.2012.07986.x.
  • Zhao C, Fraczek MG, Dineen L, Lebedinec R, Macheleidt J, Heinekamp T, Delneri D, Bowyer P, Brakhage AA, Bromley M. 2019. High-throughput gene replacement in Aspergillus fumigatus. Curr Protoc Microbiol. 54(1):e88. doi: 10.1002/cpmc.88.
  • Zhao Y, Lee MK, Lim J, Moon H, Park HS, Zheng W, Yu JH. 2022. The velvet-activated putative C6 transcription factor VadZ regulates development and sterigmatocystin production in Aspergillus nidulans. Fungal Biol. 126(6–7):421–428. doi: 10.1016/j.funbio.2022.05.001.
  • Zhou KM, Kohlhaw GB. 1990. Transcriptional activator LEU3 of yeast. Mapping of the transcriptional activation function and significance of activation domain tryptophans. J Biol Chem. 265(29):17409–17412. doi: 10.1016/S0021-9258(18)38174-2.
  • Zhu G, Chen S, Zhang Y, Lu L. 2023. Mitochondrial membrane-associated protein Mba1 confers antifungal resistance by affecting the production of reactive oxygen species in Aspergillus fumigatus. Antimicrob Agents Chemother. 67(8):e0022523. doi: 10.1128/aac.00225-23.