162
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy literacy for all? Exploring whether prior interest and energy knowledge mediate energy literacy development in a modern socio-scientific museum exhibition

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Received 03 May 2023, Accepted 12 Apr 2024, Published online: 25 Apr 2024

References

  • Adams, J., Kenner, A., Leone, B., Rosenthal, A., Sarao, M., & Boi-Doku, T. (2022). What is energy literacy? Responding to vulnerability in Philadelphia’s energy ecologies. Energy Research & Social Science, 91, September 2022, 102718. https://doi.org/10.1016/j.erss.2022.102718
  • Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. Ways of knowing in science and mathematics series. Teachers College Press.
  • Bamberger, Y., & Tal, T. (2008). Multiple outcomes of class visits to natural history museums: The students’ view. Journal of Science Education and Technology, 17(3), 274–284. https://doi.org/10.1007/s10956-008-9097-3
  • Bell, L. (2008). Engaging the public in technology policy: A new role for science museums. Science Communication, 29(3), 386–398. https://doi.org/10.1177/1075547007311971
  • Bell, P. (2009). Learning science in informal environments: People, places, and pursuits. Washinton, DC: The National Academies Press.
  • Bossér, U. (2018). Exploring the complexities of integrating socioscientific issues in science teaching [Doctoral Dissertation, Linneaus University Dissertations: Vol. 304. Linnaeus University Press].
  • Böttcher, F., Hackmann, A., & Meisert, A. (2016). Argumente entwickeln, prüfen und gewichten: Bewertungskompetenz im Biologieunterricht kontextübergreifend fördern – Konzeptentwicklung. MNU Journal, 3, 150–157.
  • Bransford, J., Stevens, R., Schwartz, D., Meltzoff, A. N., Pea, R., Roschelle, J., Vye, N., Kuhl, P. K., Bell, P., Barron, B., Reeves, B., & Sabelli, N. (2006). Learning theories and education: Toward a decade of synergy. In P. Alexander, & P. Winne (Eds.), Handbook of educational psychology. (pp. 209–244). Erlbaum.
  • Bransford, J. D. (2000). How people learn: Brain, mind, experience, and school: Expanded edition. National Academies Press.
  • Burke, M. J., & Stephens, J. C. (2017). Energy democracy: Goals and policy instruments for sociotechnical transitions. Energy Research & Social Science, 33(2), 35–48. https://doi.org/10.1016/j.erss.2017.09.024
  • Cameron, F. (2005). Contentiousness and shifting knowledge paradigms: The roles of history and science museums in contemporary societies. Museum Management and Curatorship, 20(3), 213–233. https://doi.org/10.1016/j.musmancur.2005.05.002
  • Carman, J., Zint, M., Burkett, E., & Ibáñez, I. (2021). The role of interest in climate change instruction. Science Education, 105(2), 309–352. https://doi.org/10.1002/sce.21610
  • Chen, R. F. (Ed.). (2014). Teaching and learning of energy in K-12 education. Springer.
  • DeWaters, J. E., Powers, S. E., & Graham, M. (2007). Developing an energy literacy scale. Proceedings of the 2007 ASEE Annual Conference and Exposition, Honolulu, HI.
  • DoE. U.S. Department of Energy. (2014). Energy literacy: Essential principles and fundamental concepts for energy education. A framework for energy education for learners of all ages. U.S. Department of Energy.
  • Duan, R. J., Walker, G. J., & Orthia, L. A. (2021). Interest, emotions, relevance: Viewing science centre interactive exhibit design through the lens of situational interest. International Journal of Science Education, Part B, 11(3), 191–209. https://doi.org/10.1080/21548455.2021.1938740
  • Duit, R., & Neumann, K. (2014). Ideas for a teaching sequence for the concept of energy – Understanding the effects of energy within all the sciences. School Science Review, 596(354), 63–66.
  • Dul, J. (2016). Necessary condition analysis (NCA). Organizational Research Methods, 19(1), 10–52. https://doi.org/10.1177/1094428115584005
  • Evans, H. J., & Achiam, M. (2021). Sustainability in out-of-school science education: Identifying the unique potentials. Environmental Education Research, 46, 1–22. https://doi.org/10.1080/13504622.2021.1893662
  • Falk, J. H., & Dierking, L. D. (2000). Learning from museums: Visitor experiences and the making of meaning. American Association for State and Local History Book Series. AltaMira Press.
  • Falk, J. H., & Dierking, L. D. (2010). The 95 percent solution: School is not where most Americans learn most of their science. American Scientist, 98, 486–493. https://doi.org/10.1511/2010.87.486. http://www.americanscientist.org/ issues/id.87/past.aspx.
  • Falk, J. H., & Dierking, L. D. (2013). Museum experience revisited. Left Coast Press. https://doi.org/10.4324/9781315417851. https://www.taylorfrancis.com/books/9781315417851
  • Falk, J. H., Dierking, L. D., & Adams, M. (2011). Living in a learning society: Museums and free-choice learning. In S. MacDonald (Ed.), Blackwell companions in cultural studies: Vol. 12. A Compagnion to Museum Studies (4th ed., pp. 323–339). Wiley-Blackwell.
  • Farla, J., Markard, J., Raven, R., & Coenen, L. (2012). Sustainability transitions in the making: A closer look at actors, strategies and resources. Technological Forecasting and Social Change, 79(6), 991–998. https://doi.org/10.1016/j.techfore.2012.02.001
  • Gladwin, D., & Ellis, N. (2023). Energy literacy: Towards a conceptual framework for energy transition. Environmental Education Research, 1–15. https://doi.org/10.1080/13504622.2023.2175794
  • Harackiewicz, J. M., Smith, J. L., & Priniski, S. J. (2016). Interest matters: The importance of promoting interest in education. Policy Insights from the Behavioral and Brain Sciences, 3(2), 220–227. https://doi.org/10.1177/2372732216655542
  • Herman, B. C., Sadler, T. D., Zeidler, D. L., & Newton, M. H. (2017). A socioscientific issues approach to environmental education. In G. Reis, & J. Scott (Eds.), Environmental discourses in science education ser: v.3. International perspectives on the theory and practice of environmental education (pp. 145–161). Springer. https://doi.org/10.1007/978-3-319-67732-3_11
  • Herrmann-Abell, C. F., & DeBoer, G. E. (2017). Investigating a learning progression for energy ideas from upper elementary through high school. Journal of Research in Science Teaching, 9(2-3), 71. https://doi.org/10.1002/tea.21411
  • Hine, A., & Medvecky, F. (2015). Unfinished science in museums: a push for critical science literacy. ICOM, 14(2), A04.
  • Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645–670. https://doi.org/10.1080/09500690305021
  • Hohenstein, J., & Moussouri, T. (2018). Museum learning: Theory and research as tools for enhacing practice. Abingdon, England: Routledge.
  • Jorgenson, S. N., Stephens, J. C., & White, B. (2019). Environmental education in transition: A critical review of recent research on climate change and energy education. The Journal of Environmental Education, 50(3), 160–171. https://doi.org/10.1080/00958964.2019.1604478
  • Kellberg, S., & Newinger, C. (2018). Turning energy around: An interactive exhibition experience. Science Museum Group Journal, 9(9), 1–17. https://doi.org/10.15180/180909
  • Kellberg, S., Nordine, J., Keller, M., & Lewalter, D. (2023). Fostering students’ willingness to act pro-environmentally through an identity-oriented socio-scientific exhibition on the energy transition. Frontiers in Education, 8, 1081633. https://doi.org/10.3389/feduc.2023.1081633
  • Kinslow, A. T., Sadler, T. D., & Nguyen, H. T. (2018). Socio-scientific reasoning and environmental literacy in a field-based ecology class. Environmental Education Research, 20(2), 1–23. https://doi.org/10.1080/13504622.2018.1442418
  • Knipfler, K. (2009). Pro or con nanotechnology? Support for critical thinking and reflective judgement at science museums [Dissertation].
  • Kollmann, E. K., Reich, C., Bell, L., & Goss, J. (2013). Tackling tough topics: Using socio-scientific issues to help museum visitors participate in democratic dialogue and increase their understandings of current science and technology. Journal of Museum Education, 38(2), 174–186. https://doi.org/10.1080/10598650.2013.11510768
  • Koster, E. H. (1999). In Search of relevance: Science centers as innovators in the evolution of museums. Daedalus, 28(2), 277–296.
  • Krapp, A. (2002). Structural and dynamic aspects of interest development: Theoretical considerations from an ontogenetic perspective. Learning and Instruction, 12(4), 383–404. https://doi.org/10.1016/S0959-4752(01)00011-1
  • Lee, O., & Grapin, S. E. (2022). The role of phenomena and problems in science and STEM education: Traditional, contemporary, and future approaches. Journal of Research in Science Teaching, 59(7), 1301–1309. https://doi.org/10.1002/tea.21776
  • Lewalter, D., Gegenfurtner, A., & Renninger, K. A. (2021). Out-of-school programs and interest: Design considerations based on a meta-analysis. Educational Research Review, 34(1), 100406. https://doi.org/10.1016/j.edurev.2021.100406
  • Liu, X., & Park, M. (2014). Contextual dimensions of the energy concept and implications for energy teaching and learning. In R. F. Chen (Ed.), Teaching and learning of energy in K-12 education (pp. 175–186). Springer. https://doi.org/10.1007/978-3-319-05017-1_10
  • Lowan-Trudeau, G., & Fowler, T. A. (2021). Towards a theory of critical energy literacy: The youth strike for climate, renewable energy and beyond. Australian Journal of Environmental Education, 17, 1–11. https://doi.org/10.1017/aee.2021.15
  • Mayring, P. (2000). Qualitative inhaltsanalyse // qualitative content analysis. Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 1(2), Art. 20. https://doi.org/10.17169/fqs-1.2.1089
  • McGhie, H. (2018). Museums as key sites to accelerate climate change education, action, research and partnerships: Non-party stakeholder submission to the Talanoa Dialogue from the ‘International Symposium on Climate Change and Museums'.
  • McGhie, H. (2020). Evolving climate change policy and museums. Museum Management and Curatorship, 35(6), 653–662. https://doi.org/10.1080/09647775.2020.1844589
  • Miller, C. A., Iles, A., & Jones, C. F. (2013). The social dimensions of energy transitions. Science as Culture, 22(2), 135–148. https://doi.org/10.1080/09505431.2013.786989
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academies Press. https://doi.org/10.17226/13165
  • Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162–188. https://doi.org/10.1002/tea.21061
  • Newinger, C., Geyer, C., & Kellberg, S. (Eds.). (2017). Energie.Wenden: Energy transitions as chance and challenge in our time. oekom verlag.
  • Nordine, J. (Ed). (2016). Teaching energy across the sciences, K-12. NSTApress National Science Teachers Association.
  • OECD. (2019). Pisa 2018 assessment and analytical framework. PISA, OECD Publishing. https://doi.org/10.1787/b25efab8-en
  • Pedretti, E., & Navas Iannini, A. M. (2020). Controversy in science museums: Re-imagining spaces and practice. Routledge.
  • Presley, M. L., Sickel, A. J., Muslu, N., Merle-Johnson, D., Witzig, S. B., Izci, K., & Sadler, T. S. (2013). A framework for socio-scientific issues based education. Science Educator, 22(1), 26–32.
  • Reimers Arias, F., & Chung, C. K. (Eds.). (2016). Teaching and learning for the twenty-first century: Educational goals, policies, and curricula from six nations. Harvard Education Press.
  • Renninger, K. A., & Bachrach, J. E. (2015). Studying triggers for interest and engagement using observational methods. Educational Psychologist, 50(1), 58–69. https://doi.org/10.1080/00461520.2014.999920
  • Renninger, K. A., & Hidi, S. (2016). The power of interest for motivation and engagement. Routledge. https://doi.org/10.4324/9781315771045
  • Roberts, D. A. (2007). Scientific literacy / science literacy. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Erlbaum.
  • Sadler, T. D. (Ed.). (2011). Socio-scientific issues in the classroom (Vol. 39). Springer Netherlands. https://doi.org/10.1007/978-94-007-1159-4
  • Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391. https://doi.org/10.1007/s11165-006-9030-9
  • Sadler, T. D., Foulk, J. A., & Friedrichsen, P. J. (2016). Evolution of a model for socio-scientific issue teaching and learning. International Journal of Education in Mathematics, Science and Technology, 5(1), 75. https://doi.org/10.18404/ijemst.55999
  • Sjöström, J., & Eilks, I. (2018). Reconsidering different visions of scientific literacy and science education based on the concept of Bildung, 24, 65–88. https://doi.org/10.1007/978-3-319-66659-4_4.
  • Sutton, S. (2020). The evolving responsibility of museum work in the time of climate change. Museum Management and Curatorship, 35(6), 618–635. https://doi.org/10.1080/09647775.2020.1837000
  • Sutton, S., & Robinson, C. (2020). Museums and public climate action. Journal of Museum Education, 45(1), 1–4. https://doi.org/10.1080/10598650.2020.1722513
  • Sutton, S., Wylie, E., Economopolous, B., O'Brien, C., Shapiro, S., & Xu, S. (2017). Museums and the future of a healthy world: “Just, verdant and peaceful”. Curator: The Museum Journal, 60(2), 429–441. doi: 10.1111/cura.12200
  • Toplak, M. E., & Stanovich, K. E. (2003). Associations between myside bias on an informal reasoning task and amount of post-secondary education. Applied Cognitive Psychology, 17(7), 851–860. https://doi.org/10.1002/acp.915
  • Tynan, M. C., Credé, M., & Harms, P. D. (2020). Are individual characteristics and behaviors necessary-but-not-sufficient conditions for academic success? A demonstration of Dul’s (2016) necessary condition analysis. Learning and Individual Differences, 77(7), 101815. https://doi.org/10.1016/j.lindif.2019.101815
  • Valladares, L. (2021). Scientific literacy and social transformation: Critical perspectives about science participation and emancipation. Science & Education, 30(3), 557–587. https://doi.org/10.1007/s11191-021-00205-2
  • Wang, J. C., & Wang, T. H. (2023). Learning effectiveness of energy education in junior high schools: Implementation of action research and the predict-observe-explain model to STEM course. Heliyon, 9(3), e14058. https://doi.org/10.1016/j.heliyon.2023.e14058
  • World Economic Forum. (2020). The Global Risks Report 2020. Insight Report. Geneva: World Economic Forum.
  • Yun, A., Shi, C., & Jun, B. G. (2020). Dealing with socio-scientific issues in science exhibition: A literature review. Research in Science Education, 52(1), 99–110. https://doi.org/10.1007/s11165-020-09930-0
  • Zeidler, D. L., Herman, B. C., & Sadler, T. D. (2019). New directions in socioscientific issues research. Disciplinary and Interdisciplinary Science Education Research, 1(1), 717. https://doi.org/10.1186/s43031-019-0008-7
  • Zeidler, D. L., & Newton, M. H. (2017). Using a socioscientific issues framework for climate change education: An ecojustice approach (pp. 56–65). https://doi.org/10.4324/9781315629841-5