550
Views
0
CrossRef citations to date
0
Altmetric
Articles

Forest cover change and its carbon dynamic of the karst area in Bulusaraung, South Sulawesi, Indonesia

, , , , , , , , , & show all
Pages 179-193 | Received 27 Nov 2023, Accepted 10 Apr 2024, Published online: 23 Apr 2024

References

  • Achmad, A., & Hamzah, S. (2016). Data base karst Sulawesi Selatan. Badan Lingkungan Hidup Daerah Sulawesi Selatan.
  • Ait El Haj, F., Ouadif, L., & Akhssas, A. (2023). Simulating and predicting future land-use/land cover trends using CA- Markov and LCM models. Case Studies in Chemical and Environmental Engineering, 7, 100342. doi: 10.1016/j.cscee.2023.100342.
  • Aneesha Satya, B., Shashi, M., & Deva, P. (2020). Future land use land cover scenario simulation using open source GIS for the city of Warangal, Telangana, India. Applied Geomatics, 12(3), 281–290. doi: 10.1007/s12518-020-00298-4.
  • Badan Standardisasi Nasional. (2019). Pengukuran dan penghitungan cadangan karbon–Pengukuran lapangan untuk penaksiran cadangan karbon hutan (ground based forest ­carbon accounting). Badan Standarisasi Indonesia. SNI, 7724, 2011.
  • Breg Valjavec, M., Zorn, M., & Čarni, A. (2018). Human‐induced land degradation and biodiversity of Classical Karst landscape: On the example of enclosed karst depressions (dolines). Land Degradation & Development, 29(10), 3823–3835. doi: 10.1002/ldr.3116.
  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer (Vol. 134). Food & Agriculture Org.
  • Budiyanto, E., Purnomo, N. H., Muzayanah, A. K., Prasetyo, K., & Maginta, N. S. D. The Study of Karst Desertification Maros Pangkep Based on Landsat 8 OLI Imagery. GeoEco, 8(1), 77–86. doi: 10.20961/ge.v8i1.51425.
  • Cahyadi, A. (2010). Pengelolaan kawasan karst dan peranannya dalam siklus karbon di Indonesia. Makalah dalam Seminar Nasional Perubahan Iklim di Indonesia,
  • Cao, J., Hu, B., Groves, C., Huang, F., Yang, H., & Zhang, C. (2016). Karst dynamic system and the carbon cycle. Zeitschrift für Geomorphologie, Supplementary Issues, 35–55. doi: 10.1127/zfg_suppl/2016/00304.
  • Cao, X., Wu, Q., Wang, W., & Wu, P. (2023). Carbon dioxide partial pressure and its diffusion flux in karst surface aquatic ecosystems: a review. Acta Geochimica. doi: 10.1007/s11631-023-00625-7.
  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., & Kira, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. doi: 10.1007/s00442-005-0100-x.
  • Danardono Haryono, E., & Widyastuti, M. (2019). Potential of Carbon Stocks and Its Economic Values in Tropical Karst Landscape (Case Study in Biduk-Biduk Karst, East Kalimantan, Indonesia). Journal of Physics: Conference Series, doi: 10.1088/1742-6596/1373/1/012030.
  • Drew, D. (2017). Karst hydrogeology and human activities: impacts, consequences and implications: IAH international contributions to hydrogeology 20. Routledge.
  • Fachrul, M. F. (2012). Metode sampling bioekologi. Bumi Aksara.
  • Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F. T., Moore Iii, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., & Steffen, W. (2000). The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 290(5490), 291–296. doi: 10.1126/science.290.5490.291.
  • Fatinaware, A., Fauzi, A., & Hadi, S. (2019). Kebijakan Pengelolaan Ruang dan Keberlanjutan Kawasan Karst Maros Pangkep Provinsi Sulawesi Selatan. Journal of Agriculture, Resource and Environmental Economics, 2(1), 26–37.
  • Gbedzi, D. D., Ofosu, E. A., Mortey, E. M., Obiri-Yeboah, A., Nyantakyi, E. K., Siabi, E. K., Abdallah, F., Domfeh, M. K., & Amankwah-Minkah, A. (2022). Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa. Environmental Challenges, 6, 100441. doi: 10.1016/j.envc.2022.100441.
  • Ghale, B., Mitra, E., Sodhi, H. S., Verma, A. K., & Kumar, S. (2022). Carbon Sequestration Potential of Agroforestry Systems and Its Potential in Climate Change Mitigation. Water, Air, & Soil Pollution, 233(7), 228. doi: 10.1007/s11270-022-05689-4.
  • Gilbertson, J. K., Kemp, J., & van Niekerk, A. (2017). Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Computers and Electronics in Agriculture, 134, 151–159. doi: 10.1016/j.compag.2016.12.006.
  • Hadi, S. J., Shafri, H. Z. M., & Mahir, M. D. (2014). Modelling LULC for the period 2010-2030 using GIS and Remote sensing: a case study of Tikrit, Iraq. IOP Conference Series: Earth and Environmental Science, 20(1), 012053. doi: 10.1088/1755-1315/20/1/012053.
  • Hand, C. (2005). Simple cellular automata on a spreadsheet. Comput. High. Educ. Econ. Rev, 17.
  • Haryono, E. (2011). Atmospheric Carbon Dioxide Sequestration Trough Karst Denudation Processes Estimated From Indonesian Karst Region. Asian Trans-Disciplinary Karst Conference.
  • He, G., Zhao, X., & Yu, M. (2021). Exploring the multiple disturbances of karst landscape in Guilin World Heritage Site, China. CATENA, 203, 105349. doi: 10.1016/j.catena.2021.105349.
  • Huang, Z.-S., Yu, L.-F., Fu, Y.-H., & Yang, R. (2015). Characteristics of carbon sequestration during natural restoration of Maolan karst forest ecosystems. Chinese Journal of Plant Ecology, 39(6), 554.
  • International Geoscience and Geoparks Programme. (2023). Maros-Pangkep UNESCO Global Geopark. https://www.unesco.org/en/iggp/geoparks/maros-pangkep.
  • Jackson, R. B., Jobbágy, E. G., Avissar, R., Roy, S. B., Barrett, D. J., Cook, C. W., Farley, K. A., le Maitre, D. C., McCarl, B. A., & Murray, B. C. (2005). Trading Water for Carbon with Biological Carbon Sequestration. Science, 310(5756), 1944–1947. doi: 10.1126/science.1119282.
  • Jelev, G., Stefanova, D., & Stefanov, P. (2021). Land cover and land use change in karst region Devetashko plateau. Aerosp Res Bulgaria, 33, 51–78. doi: 10.3897/arb.v33.e05.
  • Jensen, J. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. Pearson Education.
  • Jiang, Z., Lian, Y., & Qin, X. (2014). Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Science Reviews, 132, 1–12. doi: 10.1016/j.earscirev.2014.01.005.
  • Kang, Z., Chen, J., Yuan, D., He, S., Li, Y., Chang, Y., Deng, Y., Chen, Y., Liu, Y., Jiang, G., Wang, X., & Zhang, Q. (2020). Promotion function of forest vegetation on the water & carbon coupling cycle in karst critical zone: Insights from karst groundwater systems in south China. Journal of Hydrology, 590, 125246. doi: 10.1016/j.jhydrol.2020.125246.
  • Kang, Z. Q., & He, S. Y. (2013). The Soil and Vegetation Effect on Carbon Transfer Path in Epigenic Karst System. Advanced Materials Research, 726-731, 3732–3736. doi: 10.4028/www.scientific.net/AMR.726-731.3732.
  • Lezhava, Z., Tsikarishvili, K., Asanidze, L., Chikhradze, N., Avkopashvili, G., & Tolordava, T. (2020). Impact of Anthropogenic Factor on Karst Landscape (Zemo Imereti Structural Plateau Case Study), Georgia, Caucasus. Open Journal of Geology, 10(7), 771–783. doi: 10.4236/ojg.2020.107035.
  • Li, C., Wang, J., Liu, X., & Xu, K. (2024). Construction of Karst Landscape Ecological Security Pattern Based on Conflict between Human and Nature in Puzhehei. Sustainability, 16(2), 908. doi: 10.3390/su16020908.
  • Li, F., Altermatt, F., Yang, J., An, S., Li, A., & Zhang, X. (2020). Human activities’ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Global Change Biology, 26(12), 6867–6879. doi: 10.1111/gcb.15357.
  • Li, Y. (2012). Soil improvement and its methods. Plant. Environ, 11, 240. doi: 10.1016/j.catena.2021.105349.
  • Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation (7th ed.). John Wiley & Sons.
  • Liu, C., Liu, Y., Guo, K., Wang, S., Liu, H., Zhao, H., Qiao, X., Hou, D., & Li, S. (2016). Aboveground carbon stock, allocation and sequestration potential during vegetation recovery in the karst region of southwestern China: A case study at a watershed scale. Agriculture, Ecosystems & Environment, 235, 91–100. doi: 10.1016/j.agee.2016.10.003.
  • Liu, L., Zeng, F., Song, T., Wang, K., & Du, H. (2020). Stand structure and abiotic factors modulate karst forest biomass in Southwest China. Forests, 11(4), 443. doi: 10.3390/f11040443.
  • Luo, W., Jiang, Z., & Qin, X. (2005). Discussion on Landscape Ecological Land Consolidation Model in Longhe Village, Pingguo County, Guangxi. Guangxi Norm. Univ. Chin. J. Nat. Sci, 25, 98–102. doi: 10.1016/j.catena.2021.105349.
  • Mannan, A., Liu, J., Zhongke, F., Khan, T. U., Saeed, S., Mukete, B., ChaoYong, S., Yongxiang, F., Ahmad, A., Amir, M., Ahmad, S., & Shah, S. (2019). Application of land-use/land cover changes in monitoring and projecting forest biomass carbon loss in Pakistan. Global Ecology and Conservation, 17, e00535. doi: 10.1016/j.gecco.2019.e00535.
  • Martin, J. B. (2017). Carbonate minerals in the global carbon cycle. Chemical Geology, 449, 58–72. doi: 10.1016/j.chemgeo.2016.11.029.
  • Mutiara, N., Damarraya, A., & Ratnasari, M. (2018). Rekalkulasi Penutupan Lahan Indonesia Tahun 2016. Jakarta: Kementerian Lingkungan Hidup dan Kehutanan
  • Ni, J., Luo, D., Xia, J., Zhang, Z., & Hu, G. (2015). Vegetation in karst terrain of southwestern China allocates more biomass to roots. Solid Earth, 6(3), 799–810. doi: 10.5194/se-6-799-2015.
  • Obiahu, O. H., Yan, Z., & Uchenna, U. B. (2021). Spatiotemporal analysis of land use land cover changes and built-up expansion projection in predominantly dystric nitosol of Ebonyi state, Southeastern, Nigeria. Environmental Challenges, 4, 100145. doi: 10.1016/j.envc.2021.100145.
  • Parise, M., & Gunn, J. (2007). Natural and anthropogenic hazards in karst areas: an introduction. Geological Society, London, Special Publications, 279(1), 1–3. doi: 10.1144/SP279.1.
  • Peng, J., Jiang, H., Liu, Q., Green, S. M., Quine, T. A., Liu, H., Qiu, S., Liu, Y., & Meersmans, J. (2021). Human activity vs. climate change: Distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Science of The Total Environment, 769, 144297. doi: 10.1016/j.scitotenv.2020.144297.
  • Putri, I. A., Broto, B. W., & Ansari, F. (2017). Bird responses to habitat change in the karst area of Bantimurung Bulusaraung National Park. Jurnal Penelitian Kehutanan Wallacea, 6(2), 101–112. doi: 10.18330/jwallacea.2017.vol6iss2pp101-112.
  • Rahayu, Y. (2012). Rekalkulasi Penutupan Lahan Indonesia Tahun 2011. Jakarta: Kementerian dan Kehutanan
  • Ran, C., Bai, X., Tan, Q., Luo, G., Cao, Y., Wu, L., Chen, F., Li, C., Luo, X., Liu, M., & Zhang, S. (2023). Threat of soil formation rate to health of karst ecosystem. Science of The Total Environment, 887, 163911. doi: 10.1016/j.scitotenv.2023.163911.
  • Ratnasari, M., & Tosiani, A. (2022). Rekalkulasi Penutupan Lahan Indonesia Tahun 2021. Jakarta: Kementerian Lingkungan Hidup dan Kehutanan
  • Richards, A. J., & Jia, X. (2006). Remote sensing digital image analysis: an introduction (4th ed.). Springer, Verlag.
  • Rijal, S., Barkey, R. A., Nasri N, & Nursaputra, M. (2019). Profile, level of vulnerability and spatial pattern of deforestation in Sulawesi period of 1990 to 2018. Forests, 10(2), 191. doi: 10.3390/f10020191.
  • Samodra, H. (2003). Nilai Strategis Kawasan Kars di Indonesia dan Usaha Pengelolaannya secara Berkelanjutan. Suplemen Tulisan pada Pelatihan Dasar Geologi untuk Pecinta Alam dan Pendaki Gunung, IAGI.
  • Sari, S., Setiahadi, R., Wardhani, R., Sanyoto, R., & Anom, P. (2021). Strategy mitigation action of climate change of land-based in geopark karst area of Gunungsewu, Yogyakarta, Indonesia. IOP Conference Series: Earth and Environmental Science, doi: 10.1088/1755-1315/824/1/012071.
  • Setya, R., & Wiryani, E. Jumari. (2019). Dinamika Tutupan Lahan di Kawasan Karst Kecamatan Gunem Kabupaten Rembang. Jurnal Ilmu Lingkungan, 17(2), 264–271. doi: 10.14710/jil.17.2.264-271.
  • Song, X., Gao, Y., Wen, X., Guo, D., Yu, G., He, N., & Zhang, J. (2017). Carbon sequestration potential and its eco-service function in the karst area, China. Journal of Geographical Sciences, 27(8), 967–980. doi: 10.1007/s11442-017-1415-3.
  • Srijono, H. D. (2008). Geowisata kawasan karst Maros, Sulawesi Selatan. Prosiding Seminar Indonesian Scientific Karst Forum I,
  • Syano, N. M., Nyangito, M. M., Kironchi, G., & Wasonga, O. V. (2023). Agroforestry practices impacts on soil properties in the drylands of Eastern Kenya. Trees, Forests and People, 14, 100437. doi: 10.1016/j.tfp.2023.100437.
  • Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., Keersmaecker, W. D., Tian, F., Schurgers, G., Xiao, X., Luo, Y., Chen, C., Myneni, R., Shi, Z., Chen, H., & Fensholt, R. (2018). Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 1(1), 44–50. doi: 10.1038/s41893-017-0004-x.
  • Wang, M., Chen, H., Zhang, W., & Wang, K. (2021). Soil organic carbon stock and its changes in a typical karst area from 1983 to 2015. Journal of Soils and Sediments, 21(1), 42–51. doi: 10.1007/s11368-020-02745-6.
  • Wu, Y., & Wu, Y. (2022). The Increase in the Karstification–Photosynthesis Coupled Carbon Sink and Its Implication for Carbon Neutrality. Agronomy, 12(9), 2147. https://www.mdpi.com/2073-4395/12/9/2147 doi: 10.3390/agronomy12092147.
  • Xiao, H., & Weng, Q. (2007). The impact of land use and land cover changes on land surface temperature in a karst area of China. Journal of Environmental Management, 85(1), 245–257. doi: 10.1016/j.jenvman.2006.07.016.
  • Yang, R., Chen, B., Liu, H., Liu, Z., & Yan, H. (2015). Carbon sequestration and decreased CO2 emission caused by terrestrial aquatic photosynthesis: Insights from diel hydrochemical variations in an epikarst spring and two spring-fed ponds in different seasons. Applied Geochemistry, 63, 248–260. doi: 10.1016/j.apgeochem.2015.09.009.
  • Yang, W., Min, Z., Yang, M., & Yan, J. (2022). Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development–An Overview. International Journal of Environmental Research and Public Health, 19(21), 14109. https://www.mdpi.com/1660-4601/19/21/14109 doi: 10.3390/ijerph192114109.
  • Yulistyarini, T., Fiqa, A. P., & Laksono, R. A. (2016). Conservation area at Cirebon Quarry (Mt. Blindis) ands it’s potency in carbon sequestration. Jurnal Biologi Indonesia, 12(1), 49–55.
  • Yurike, Y., Yonariza, Y., & Febriamansyah, R. (2021). Patterns of Forest Encroachment Behavior Based on Characteristics of Immigrants and Local Communities. International Journal of Engineering, Science and Information Technology, 1(4), 84–89. doi: 10.52088/ijesty.v1i4.175.
  • Yusran, A. (2017). Karst Menara, Harta Unik Taman Nasional Bantimurung Bulusaraung. liputan6.com. http://regional.liputan6.com/read/2852210/karst-menara-harta-unik-taman-nasional-bantimurung.
  • Zhang, C. (2011). Carbonate rock dissolution rates in different landuses and their carbon sink effect. Chinese Science Bulletin, 56(35), 3759–3765. doi: 10.1007/s11434-011-4404-4.
  • Zhang, L., Wang, Y., Chen, J., Feng, L., Li, F., & Yu, L. (2022). Characteristics and Drivers of Soil Organic Carbon Saturation Deficit in Karst Forests of China. Diversity, 14(2), 62. https://www.mdpi.com/1424-2818/14/2/62 doi: 10.3390/d14020062.
  • Zhang, M., Yang, W., Yang, M., & Yan, J. (2022). Guizhou Karst Carbon Sink and Sustainability–An Overview. Sustainability, 14(18), 11518. https://www.mdpi.com/2071-1050/14/18/11518 doi: 10.3390/su141811518.
  • Zhang, Z., Huang, X., & Zhou, Y. (2020). Spatial heterogeneity of soil organic carbon in a karst region under different land use patterns. Ecosphere, 11(3), e03077. doi: 10.1002/ecs2.3077.
  • Zhang, Z., Zhou, Y., Wang, S., & Huang, X. (2019). The soil organic carbon stock and its influencing factors in a mountainous karst basin in P. R. China. Carbonates and Evaporites, 34(3), 1031–1043. doi: 10.1007/s13146-018-0432-3.
  • Zhao, S., Pereira, P., Wu, X., Zhou, J., Cao, J., & Zhang, W. (2020). Global karst vegetation regime and its response to climate change and human activities. Ecological Indicators, 113, 106208. doi: 10.1016/j.ecolind.2020.106208.