259
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of synthetic fertilization dose on the diameter increase, height and mortality of Cinchona officinalis L. (Rubiaceae)

, , , , , & show all
Pages 194-200 | Received 15 Aug 2023, Accepted 10 Apr 2024, Published online: 18 Apr 2024

References

  • Albán-Castillo J, Chilquillo E, Melchor- Castro B, Arakaki M, León B, Suni M. 2020. Cinchona L. “Árbol de la Quina”: repoblamiento y reforestación en el Perú. Rev Peru Biol. 27(3):423–426. doi: 10.15381/rpb.v27i3.18697.
  • Alvarado A, Raigosa J. 2012. Nutrición y fertilización forestal en regiones tropicales. A(eds.). Asociación Costarricense de la Ciencia del Suelo. San José, Costa Rica. 411 p. Agron Costarric Rev Cienc Agríc. 36(1):113–115.
  • Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y. 2009. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol. 150(2):772–785. doi: 10.1104/pp.108.133629.
  • Armijos-González R, Pérez-Ruiz C. 2016. In vitro germination and shoot proliferation of the threatened species Cinchona officinalis L (Rubiaceae). J For Res. 27(6):1229–1236. doi: 10.1007/s11676-016-0272-8.
  • Bharadwaj KC, Gupta T, Singh RM. 2018. Chapter 9 - Alkaloid group of Cinchona officinalis: structural, synthetic, and medicinal aspects. In: Tewari A, Tiwari S, editors. Synth Med Agents Plants [Internet]. [place unknown]: Elsevier; [accessed 2022 May 9]; p. 205–227. doi: 10.1016/B978-0-08-102071-5.00009-X.
  • Buddenhagen CE, Renteria JL, Gardener M, Wilkinson SR, Soria M, Yánez P, Tye A, Valle R. 2004. The Control of a Highly Invasive Tree Cinchona pubescens in Galapagos1. Weed Technol. 18:1194–1202. doi: 10.1614/0890-037X(2004)018[1194:TCOAHI]2.0.CO;2.
  • Christophe HL, Albert N, Martin Y, Mbaiguinam M. 2019. Effect of organic fertilizers rate on plant survival and mineral properties of Moringa oleifera under greenhouse conditions. Int J Recycl Org Waste Agric. 8(1):123–130. doi: 10.1007/s40093-019-0282-6.
  • Cóndor E, de Oliveira BH, Loayza Ochoa K, Reyna Pinedo V. 2009. Estudio químico de los tallos de Cinchona pubescens Vahl. Rev Soc Quím Perú. 75(1):54–63.
  • De-la-Cruz H, Vilcapoma G, Zevallos PA. 2007. Ethnobotanical study of medicinal plants used by the Andean people of Canta, Lima, Peru. J Ethnopharmacol. 111(2):284–294. doi: 10.1016/j.jep.2006.11.018.
  • Fernandez FH, Huaccha AE, Barturén LM, Quiñones L, Sánchez T. 2022. Efecto del sustrato en la propagación sexual de Cinchona officinalis L. (Rubiaceae): Ecosistemas. 31(1):2314–2314. doi: 10.7818/ECOS.2314.
  • Fernandez FH, Huaccha AE, Quiñones LQ, Sánchez T. 2021. Influencia del tamaño de plántula de Cinchona officinalis (Rubiaceae) en la supervivencia y deformación del tallo posterior al repique. Rev Cuba Cienc For. 9(3):412–422.
  • Fernandez-Zarate FH, Huaccha-Castillo AE, Quiñones-Huatangari L, Vaca-Marquina SP, Sanchez-Santillan T, Morales-Rojas E, Seminario-Cunya A, Guelac-Santillan M, Barturén-Vega LM, Coronel-Bustamante D. 2022. Effect of arbuscular mycorrhiza on germination and initial growth of Cinchona officinalis L. (Rubiaceae). For Sci Technol. 18(4):182–189. doi: 10.1080/21580103.2022.2124318.
  • Grzyb ZS, Piotrowski W, Bielicki P, Paszt LS. 2013. Effect of Some Bioproducts on Winter Mortality of Grafted Buds and the Number of Maiden Fruit Trees Produced in an Organic Nursery. J Life Sci. 7(3):282–288.
  • Hu Y-L, Hu Y, Zeng D-H, Tan X, Chang SX. 2015. Exponential fertilization and plant competition effects on the growth and N nutrition of trembling aspen and white spruce seedlings. Can J For Res. 45(1):78–86. doi: 10.1139/cjfr-2014-0187.
  • Huamán L, Albán J, Chilquillo E. 2019. Taxonomic aspects and advances in the knowledge of the current state of the quina tree (Cinchona officinalis L) in the north of Peru. Ecol Apl. 18(2):145–153. doi: 10.21704/rea.v18i2.1333.
  • Massone DS, Bartoli CG, Pastorino MJ, Massone DS, Bartoli CG, Pastorino MJ. 2018. Efecto de la fertilización con distintas concentraciones de nitrógeno y potasio en el crecimiento de plantines de ciprés de la cordillera (Austrocedrus chilensis) en vivero. Bosque Valdivia. 39(3):375–384. doi: 10.4067/S0717-92002018000300375.
  • Novoa MA, Miranda D, Melgarejo LM, Novoa MA, Miranda D, Melgarejo LM. 2018. Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass). Rev Colomb Cienc Hortícolas. 12(2):293–307. doi: 10.17584/rcch.2018vl2i2.8092.
  • Oliet JA, Planelles R, Artero F, Jacobs DF. 2005. Nursery fertilization and tree shelters affect long-term field response of Acacia salicina Lindl. planted in Mediterranean semiarid conditions. For Ecol Manag. 215(1):339–351. doi: 10.1016/j.foreco.2005.05.024.
  • Onyango MOA. 2002. Effect of Nitrogen on Leaf Size and Anatomy in Onion (Allium Cepa L.). East Afr Agric For J. 68(2):73–78. doi: 10.4314/eaafj.v68i2.1779.
  • Perner H, Schwarz D, Krumbein A, Li X, George E. 2007. Influence of nitrogen forms and mycorrhizal colonization on growth and composition of Chinese bunching onion. J Plant Nutr Soil Sci. 170(6):762–768. doi: 10.1002/jpln.200625103.
  • Pokharel P, Chang SX. 2016. Exponential fertilization promotes seedling growth by increasing nitrogen retranslocation in trembling aspen planted for oil sands reclamation. For Ecol Manag. 372:35–43. doi: 10.1016/j.foreco.2016.03.034.
  • Prendergast HDV, Dolley D. 2001. Jesuits’ Bark (Cinchona [Rubiaceae]) and Other Medicines. Econ Bot. 55(1):3–6. doi: 10.1007/BF02864540.
  • Salifu KF, Jacobs DF, Birge ZKD. 2009. Nursery Nitrogen Loading Improves Field Performance of Bareroot Oak Seedlings Planted on Abandoned Mine Lands. Restor Ecol. 17(3):339–349. doi: 10.1111/j.1526-100X.2008.00373.x.
  • Santos FCB dos, Oliveira TK de, Lessa LS, Oliveira TC de, Luz SA da. 2010. Produção de mudas de cupuaçuzeiro em diferentes substratos e tubetes. Magistra Cruz Almas - BA. 22(3,4):185–190.
  • Sardans J, Peñuelas J. 2015. Potassium: a neglected nutrient in global change. Glob Ecol Biogeogr. 24(3):261–275. doi: 10.1111/geb.12259.
  • Serri F, Souri MK, Rezapanah M. 2021. Growth, biochemical quality and antioxidant capacity of coriander leaves under organic and inorganic fertilization programs. Chem Biol Technol Agric. 8(1):33. doi: 10.1186/s40538-021-00232-9.
  • Souri MK, Hatamian M. 2019. Aminochelates in plant nutrition: a review. J Plant Nutr. 42(1):67–78. doi: 10.1080/01904167.2018.1549671.
  • Valdiviezo KG, Guamán VHE, Serrano JM, Patiño JM, Arevalo MY, Ortega CV. 2018. Procesos biotecnológicos para la inducción de callos a partir de vitroplantas de cinchona officinalis l., a nivel de laboratorio en la provincia de Loja, Ecuador. Tzhoecoen Rev Científica. 10(2):299–312.
  • Verbruggen N, Hermans C. 2013. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil. 368(1):87–99. doi: 10.1007/s11104-013-1589-0.
  • Wang M, Zheng Q, Shen Q, Guo S. 2013. The Critical Role of Potassium in Plant Stress Response. Int J Mol Sci. 14(4):7370–7390. doi: 10.3390/ijms14047370.
  • Westerveld SM, McKeown AW, Scott-Dupree CD, McDonald MR. 2003. How well do critical nitrogen concentrations work for cabbage, carrot, and onion crops? HortScience. 38(6):1122–1128. doi: 10.21273/HORTSCI.38.6.1122.