2,347
Views
5
CrossRef citations to date
0
Altmetric
Trial Watch

Trial watch: Toll-like receptor ligands in cancer therapy

ORCID Icon &
Article: 2180237 | Received 23 Jan 2023, Accepted 10 Feb 2023, Published online: 17 Feb 2023

References

  • Leulier F, Lemaitre B. Toll-like receptors–taking an evolutionary approach. Nat Rev Genet. 2008;9:165–10. doi:10.1038/nrg2303.
  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A. 2005;102(27):9577–9582. doi:10.1073/pnas.0502272102.
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. doi:10.3389/fimmu.2014.00461.
  • Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388:621–625. doi:10.1016/j.bbrc.2009.08.062.
  • Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32(3):305–315. doi:10.1016/j.immuni.2010.03.012.
  • Cardillo F, Bonfim M, da Silva Vasconcelos Sousa P, Mengel J, Ribeiro Castello-Branco LR, Pinho RT. Bacillus Calmette-Guerin Immunotherapy for Cancer. Vaccines. 2021;9(5):439. doi:10.3390/vaccines9050439.
  • Kamat AM, Flaig TW, Grossman HB, Konety B, Lamm D, O’Donnell MA, Uchio E, Efstathiou JA, Taylor JA. Expert consensus document: consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer. Nat Rev Urol. 2015;12(4):225–235. doi:10.1038/nrurol.2015.58.
  • Weiss SA, Wolchok JD, Sznol M. Immunotherapy of Melanoma: facts and Hopes. Clin Cancer Res. 2019;25(17):5191–5201. doi:10.1158/1078-0432.CCR-18-1550.
  • Smith M, Garcia-Martinez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, et al. Trial Watch: toll-like receptor agonists in cancer immunotherapy. Oncoimmunology. 2018;7(12):e1526250. doi:10.1080/2162402X.2018.1526250.
  • Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, Kepp O. Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology. 2020;9(1):1796002. doi:10.1080/2162402X.2020.1796002.
  • Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology. 2021;10(1):1984677. doi:10.1080/2162402X.2021.1984677.
  • Rammensee H-G, Wiesmuller K-H, Chandran PA, Zelba H, Rusch E, Gouttefangeas C, Kowalewski DJ, Di Marco M, Haen SP, Walz JS, et al. A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J Immunother Cancer. 2019;7(1):307. doi:10.1186/s40425-019-0796-5.
  • Nelde A, Maringer Y, Bilich T, Salih HR, Roerden M, Heitmann JS, Marcu A, Bauer J, Neidert MC, Denzlinger C, et al. Immunopeptidomics-Guided Warehouse Design for Peptide-Based Immunotherapy in Chronic Lymphocytic Leukemia. Front Immunol. 2021;12:705974. doi:10.3389/fimmu.2021.705974.
  • Marconato M, Wacher M, Wacher M, Richter M, Denk M, Heitmann JS, Heitmann JS, Camz JS, Walz JS. A Phase I trial of personalized multi-peptide vaccination in combination with the TLR1/2 ligand XS15 in CLL patients under Bruton-Tyrosin-Kinase-inhibitor based regimes - Preclinical development and study design. Cancer Res. 2022;82:3574. doi:10.1158/1538-7445.AM2022-3574.
  • Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédios C, et al. Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20(11):1301–1309. doi:10.1038/nm.3708.
  • Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology. 2020;9(1):1771143. doi:10.1080/2162402X.2020.1771143.
  • Radolec MOB, Vlad A, Vlad A, Vlad A, Vlad A, Vlad A, Vlad A, Vlad A, Vlad A. Systemic immune checkpoint blockade and intraperitoneal chemo-immunotherapy in recurrent ovarian cancer: an interim analysis. Gynecol Oncol. 2022;166:S165–S166. doi:10.1016/S0090-8258(22)01540-2.
  • Gandhi SOM, Ford C, Slomba R, Quinn M, O’Connor T, Levine E, Kalinski P. Safety and efficacy of de-escalated neoadjuvant Chemoimmunotherapy of triple negative breast cancer (TNBC) using chemokine-modulating regimen (rintatolimod, IFN-α2b, celecoxib). J ImmunoTherapy Cancer. 2022;2022:5.
  • Sheybani ND, Witter AR, Thim EA, Yagita H, Bullock TNJ, Price RJ. Combination of thermally ablative focused ultrasound with gemcitabine controls breast cancer via adaptive immunity. J Immunother Cancer. 2020;2020:8.
  • Marquez-Rodas I, Dalle S, Castanon E, Sanmamed MF, Arance AM, Cerezuela-Fuentes P, Martin Huertas R, Rodríguez-Moreno JF, Gonzalez-Cao M, Muñoz-Couselo E, et al. Combination of radiomic and biomarker signatures as exploratory objective in a phase II trial with intratumoral BO-112 plus pembrolizumab for advanced melanoma. J Clin Oncol. 2021;39(15_suppl):9586. doi:10.1200/JCO.2021.39.15_suppl.TPS9586.
  • Rodas IM, Saiag P, LdlC M, Dutriaux C, Rodríguez-Moreno J, Robert C, Arance A, Álvarez EC, Cerezuela-Fuentes P, Montaudie H, et al. 961 Preliminary results of a phase 2 study of intratumoral administration of BO-112 with pembrolizumab in patients with advanced melanoma that have progressive disease on anti-PD-1-based therapy. J ImmunoTherapy Cancer. 2021;9(Suppl 2):A1011–A2. doi:10.1136/jitc-2021-SITC2021.961.
  • Diebold SS, Kaisho T, Hemmi H, Akira S. Reis e Sousa C. Innate Antiviral Responses by Means of TLR7-mediated Recognition of single-stranded RNA Science. 2004;303:1529–1531.
  • Patel MRD, Andtbacka R, Andtbacka R, Andtbacka R, Andtbacka R, Andtbacka R, Andtbacka R, Andtbacka R, Andtbacka R. BDB001, a toll-like receptor 7 and 8 (TLR7/8) agonist, can be safely administered intravenously in combination with atezolizumab and shows clinical responses in advanced solid tumors. J ImmunoTherapy Cancer. 2021;9(Suppl 2):A501–A501. doi:10.1136/jitc-2021-SITC2021.472.
  • Patel MRTAW, Rasco DW, Johnson ML, Alistar AT, Li L, Chung AH, Andtbacka RHI. BDB001, an intravenously administered toll-like receptor 7 and 8 (TLR7/8) agonist, in combination with pembrolizumab in advanced solid tumors: Phase 1 safety and efficacy results. J Clin Oncol. 2021;39(15).
  • Janku F, Doi T, Ajani J, Kuboki Y, Mahling P, Subramanian K, Pelletier M, Askoxylakis V, Siena S. A first in-human, multicenter, open-label, dose-finding phase 1 study of the immune stimulator antibody conjugate NJH395 in patients with nonbreast HER2+ advanced malignancies. J ImmunoTherapy Cancer. 2020;8.
  • Janku F, Han SW, Doi T, Amatu A, Ajani JA, Kuboki Y, Cortez A, Cellitti SE, Mahling PC, Subramanian K, et al. Preclinical Characterization and Phase I Study of an Anti-HER2-TLR7 Immune-Stimulator Antibody Conjugate in Patients with HER2+ Malignancies. Cancer Immunol Res. 2022;10(12):1441–1461. doi:10.1158/2326-6066.CIR-21-0722.
  • Crd SM, Hanna GJ, Li BT, Moore KN, Pegram MD, Rasco DW, Spira AI, Alonso M, Fang L, Husain A, et al. Preliminary results from a phase 1/2 study of BDC-1001, a novel HER2 targeting TLR7/8 immune-stimulating antibody conjugate (ISAC), in patients (pts) with advanced HER2-expressing solid tumors. J Clin Oncol. 2021;39(15):2549.
  • Cervantes JL, Weinerman B, Basole C, Salazar JC. TLR8: the forgotten relative revindicated. Cell Mol Immunol. 2012;9(6):434–438. doi:10.1038/cmi.2012.38.
  • Yu J, Fang T, Yun C, Liu X, Cai X. Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Front Mol Biosci. 2022;9:847835. doi:10.3389/fmolb.2022.847835.
  • Metz H, Childs M, Brevik J, Winship D, Brender T, Comeau M, Moyes K, Chang J, Adamo J, Setter B, et al. SBT6050, a HER2-directed TLR8 therapeutic, as a systemically administered, tumor-targeted human myeloid cell agonist. J Clin Oncol. 2020;38(15_suppl):3110. doi:10.1200/JCO.2020.38.15_suppl.3110.
  • Emens L, Beeram, M, Hamilton E, Piha-Paul S, Odegard V, Hamke S, Hunder N, Klempner S. A phase 1/1b study of SBT6050, a HER2-directed monoclonal antibody conjugated to a toll-like receptor 8 agonist, in subjects with advanced HER2-expressing solid tumors. J ImmunoTherapy Cancer. 2020;8:317.
  • Klempner SJBM, Sabanathan D, Chan A, Hamilton E, Loi S, Oh D, Emens LA, Patnaik A, Kim JE, Park YH, et al. Interim Results from Phase 1/1b Study of SBT6050 Alone or In Combination with Pembrolizumab in Advanced or Metastatic HER2-Expressing Solid Tumors. Annals Oncol. 2021;32:S450. doi:10.1016/j.annonc.2021.08.491.
  • Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93. doi:10.1038/s41392-022-00947-7.
  • Comeau MR, Metz H, Stevens B, Winship D, Brevik J, Rhodehamel M, Childs M, Hay E, Chang J, Fan L-Q, et al. Abstract 1858: SBT6290, a systemically administered Nectin4-directed TLR8 ImmunoTAC™ product candidate, is designed for tumor-localized activation of myeloid cells. Cancer Res. 2021;81(13_Supplement):1858. doi:10.1158/1538-7445.AM2021-1858.
  • Kang TH, Mao C-P, Kim YS, Kim TW, Yang A, Lam B, Tseng S-H, Farmer E, Park Y-M, Hung C-F, et al. TLR9 acts as a sensor for tumor-released DNA to modulate anti-tumor immunity after chemotherapy. J Immunother Cancer. 2019;7(1):260. doi:10.1186/s40425-019-0738-2.
  • Karapetyan L, Luke JJ, Davar D. Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther. 2020;13:10039–10060. doi:10.2147/OTT.S247050.
  • Braun M, Jandus C, Maurer P, Hammann-Haenni A, Schwarz K, Bachmann MF, Speiser DE, Romero P, et al. Virus-like particles induce robust human T-helper cell responses. Eur J Immunol. 2012;42(2):330–340. doi:10.1002/eji.201142064.
  • Ghosh C. Impact of SD-101, a toll-like receptor 9 class C (TLR9C), agonist on myeloid derived suppressor cells. J ImmunoTherapy Cancer. 2022;10: 1165.
  • Idera pharmaceuticals announces results from illuminate-301 trial of tilsotolimod + ipilimumab in anti-pd-1 refractory advanced melanoma.
  • Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M, Lee H, Scuto A, Liu Y, Yang C, Deng J, Soifer HS, Raubitschek A, Forman S, Rossi JJ, Pardoll DM, Jove R, Yu H, et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol. 2009;27:925–932. doi:10.1038/nbt.1564.
  • Tallac Therapeutics Announces FDA Clearance of Investigational New Drug (IND) Application for TAC-001, a First-in-Class Toll-like Receptor 9 (TLR9) Agonist Antibody Conjugate for Patients with Advanced Solid Tumors.
  • Kuo TC, Harrabi O, Chen A, Sangalang ER, Doyle L, Fontaine D, Li M, Han B, Pons J, Sim J, et al. Abstract 1721: TAC-001, a toll-like receptor 9 (TLR9) agonist antibody conjugate targeting B cells, promotes anti-tumor immunity and favorable safety profile following systemic administration in preclinical models. Cancer Res. 2021;81(13_Supplement):1721. doi:10.1158/1538-7445.AM2021-1721.
  • Heitmann JS, Bilich T, Tandler C, Nelde A, Maringer Y, Marconato M, Reusch J, Jäger S, Denk M, Richter M, et al. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature. 2022;601(7894):617–622. doi:10.1038/s41586-021-04232-5.
  • Ohkuri T, Kosaka A, Ikeura M, Salazar AM, Okada H. IFN-gamma- and IL-17-producing CD8(+) T (Tc17-1) cells in combination with poly-ICLC and peptide vaccine exhibit antiglioma activity. J Immunother Cancer. 2021;9.
  • Anfray C, Mainini F, Digifico E, Maeda A, Sironi M, Erreni M, Anselmo A, Ummarino A, Gandoy S, Expósito F, Redrado M, Serrano D, Calvo A, Martens M, Bravo S, Mantovani A, Allavena P, Andón FT, et al. Intratumoral combination therapy with poly(I:C) and resiquimod synergistically triggers tumor-associated macrophages for effective systemic antitumoral immunity. J Immunother Cancer. 2021;9.
  • Le Naour J, Liu P, Zhao L, Adjemian S, Sztupinszki Z, Taieb J, Mulot C, Silvin A, Dutertre C-A, Ginhoux F, et al. A TLR3 Ligand Reestablishes Chemotherapeutic Responses in the Context of FPR1 Deficiency. Cancer Discov. 2021;11(2):408–423. doi:10.1158/2159-8290.CD-20-0465.
  • Sztupinszki Z, Le Naour J, Vacchelli E, Laurent-Puig P, Delaloge S, Szallasi Z, Kroemer G. A major genetic accelerator of cancer diagnosis: rs867228 in FPR1. Oncoimmunology. 2021;10(1):1859064. doi:10.1080/2162402X.2020.1859064.
  • Vacchelli E, Le Naour J, Kroemer G. The ambiguous role of FPR1 in immunity and inflammation. Oncoimmunology. 2020;9(1):1760061. doi:10.1080/2162402X.2020.1760061.
  • Alvarez M, Molina C, De Andrea CE, Fernandez-Sendin M, Villalba M, Gonzalez-Gomariz J, Ochoa C, Teijeira A, Glez-Vaz J, Aranda F, Sanmamed MF, Rodriguez-Ruiz ME, Fan X, Shen WH, Berraondo P, Quintero M, Melero I, et al. Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy. J Immunother Cancer. 2021;9(11).
  • Rodriguez-Ruiz ME, Serrano-Mendioroz I, Garate-Soraluze E, Sanchez-Mateos P, Barrio-Alonso C, Rodriguez Lopez I, Pascual VD, Moreno LA, Alvarez M, Sanmamed MF, Perez-Gracia JL, Escuin-Ordinas H, Quintero M, Melero I, et al. Intratumoral BO-112 in combination with radiotherapy synergizes to achieve CD8 T-cell-mediated local tumor control. J Immunother Cancer. 2023;11.
  • Reches A, Ophir Y, Stein N, Kol I, Isaacson B, Charpak Amikam Y, Elnekave A, Tsukerman P, Brlic PK, Lenac T, Seliger B, Jonjic S, Mandelboim O, et al. Nectin 4 is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity. J Immunother Cancer. 2020;8.
  • Sato-Kaneko F, Yao S, Ahmadi A, Zhang SS, Hosoya T, Kaneda MM, Varner JA, Pu M, Messer KS, Guiducci C, Coffman RL, Kitaura K, Matsutani T, Suzuki R, Carson DA, Hayashi T, Cohen EE. 2017. doi:10.1172/jci.insight.93397. vol. 2. JCI insight.
  • Wang S, Campos J, Gallotta M, Gong M, Crain C, Naik E, Coffman RL, Guiducci C. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8 + T cells. Proc Natl Acad Sci U S A. 2016;113:E7240–E9. doi:10.1073/pnas.1608555113.
  • Cohen EEW, Nabell L, DJ W, Day T, GA D, Milhem M, Deva S, Jameson M, Guntinas-Lichius O, Almubarak M, et al. Intralesional SD-101 in Combination with Pembrolizumab in Anti-PD-1 Treatment-Naive Head and Neck Squamous Cell Carcinoma: results from a Multicenter, Phase II Trial. Clin Cancer Res. 2022;28(6):1157–1166. doi:10.1158/1078-0432.CCR-21-1411.
  • Frank MJ, Reagan PM, Bartlett NL, Gordon LI, Friedberg JW, Czerwinski DK, Long SR, Hoppe RT, Janssen R, Candia AF, et al. In Situ Vaccination with a TLR9 Agonist and Local Low-Dose Radiation Induces Systemic Responses in Untreated Indolent Lymphoma. Cancer Discov. 2018;8(10):1258–1269. doi:10.1158/2159-8290.CD-18-0743.
  • Ribas A, Medina T, Kummar S, Amin A, Kalbasi A, Drabick JJ, Barve M, Daniels GA, Wong DJ, Schmidt EV, et al. SD-101 in Combination with Pembrolizumab in Advanced Melanoma: results of a Phase Ib, Multicenter Study. Cancer Discov. 2018;8(10):1250–1257. doi:10.1158/2159-8290.CD-18-0280.
  • Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, Maurer-Granofszky M, Roka F, Penz T, Bock C, et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun. 2019;10(1):4186. doi:10.1038/s41467-019-12160-2.
  • Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549–555. doi:10.1038/s41586-019-1922-8.
  • Perez C, Henry J, Humphries T, Kim S, Diab A, Harrabi O, Jin F, Wan H, Bermingham C, El-Kouiery A, et al. INCLINE-101, a phase 1/2, open label, dose escalation and expansion study of TAC-001 (a TLR9 agonist conjugated to a CD22 antibody) in patients with select advanced or metastatic solid tumors. J ImmunoTherapy Cancer. 2022;10:756.
  • Cheng Y, Lemke-Miltner CD, Wongpattaraworakul W, Wang Z, Chan CHF, Salem AK, Weiner GJ, Simons AL, et al. In situ immunization of a TLR9 agonist virus-like particle enhances anti-PD1 therapy. J Immunother Cancer. 2020;8(2).
  • Lemke-Miltner CD, Blackwell SE, Yin C, Krug AE, Morris AJ, Krieg AM, Weiner GJ, et al. Antibody Opsonization of a TLR9 Agonist-Containing Virus-like Particle Enhances In Situ Immunization. J Immunol. 2020;204(5):1386–1394. doi:10.4049/jimmunol.1900742.
  • Aznar MA, Planelles L, Perez-Olivares M, Molina C, Garasa S, Etxeberria I, Perez G, Rodriguez I, Bolaños E, Lopez-Casas P, et al. Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J Immunother Cancer. 2019;7(1):116. doi:10.1186/s40425-019-0568-2.
  • Gujar S, Pol JG, Kroemer G. Heating it up: oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies. Oncoimmunology. 2018;7:e1442169. doi:10.1080/2162402X.2018.1442169.
  • De Lombaerde E, De Wever O, De Geest BG. Delivery routes matter: safety and efficacy of intratumoral immunotherapy. Biochim Biophys Acta Rev Cancer. 2021;1875(2):188526. doi:10.1016/j.bbcan.2021.188526.
  • Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol. 2021;18(9):558–576. doi:10.1038/s41571-021-00507-y.
  • Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology. 2016;5(1):e1115641. doi:10.1080/2162402X.2015.1115641.
  • Bezu L, Wu Chuang A, Sauvat A, Humeau J, Xie W, Cerrato G, Liu P, Zhao L, Zhang S, Le Naour J, Pol J, van Endert P, Kepp O, Barlesi F, Kroemer G, et al. Local anesthetics elicit immune-dependent anticancer effects. J Immunother Cancer. 2022;2022:10.