1,812
Views
2
CrossRef citations to date
0
Altmetric
Brief Report

Rs867228 in FPR1 accelerates the manifestation of luminal B breast cancer

, , , , , & ORCID Icon show all
Article: 2189823 | Received 24 Jan 2023, Accepted 07 Mar 2023, Published online: 21 Mar 2023

References

  • Ugai T, Sasamoto N, Lee HY, Ando M, Song M, Tamimi RM, Kawachi I, Campbell PT, Giovannucci EL, Weiderpass E, et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol. 2022;19:656–8. doi:10.1038/s41571-022-00672-8.
  • Vacchelli E, Enot DP, Pietrocola F, Zitvogel L, Kroemer G. Impact of pattern recognition receptors on the prognosis of breast cancer patients undergoing adjuvant chemotherapy. Cancer Res. 2016;76:3122–3126. doi:10.1158/0008-5472.CAN-16-0294.
  • Vacchelli E, Ma Y, Baracco EE, Sistigu A, Enot DP, Pietrocola F, Yang H, Adjemian S, Chaba K, Semeraro M, et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science. 2015;350:972–978. doi:10.1126/science.aad0779.
  • Vacchelli E, Ma Y, Baracco EE, Zitvogel L, Kroemer G. Yet another pattern recognition receptor involved in the chemotherapy-induced anticancer immune response: formyl peptide receptor-1. Oncoimmunology. 2016;5:e1118600. doi:10.1080/2162402X.2015.1118600.
  • Chiang SF, Huang KC, Chen WT, Chen TW, Ke TW, Chao KSC. Polymorphism of formyl peptide receptor 1 (FPR1) reduces the therapeutic efficiency and antitumor immunity after neoadjuvant chemoradiotherapy (CCRT) treatment in locally advanced rectal cancer. Cancer Immunol Immunother. 2021;70:2937–2950. doi:10.1007/s00262-021-02894-8.
  • Chiang SF, Huang KC, Chen WT, Chen TW, Ke TW, Chao KSC. An independent predictor of poor prognosis in locally advanced rectal cancer: rs867228 in formyl peptide receptor 1 (FPR1). Oncoimmunology. 2021;10:1926074. doi:10.1080/2162402X.2021.1926074.
  • Baracco EE, Pietrocola F, Buque A, Bloy N, Senovilla L, Zitvogel L, Vacchelli E, Kroemer G. Inhibition of formyl peptide receptor 1 reduces the efficacy of anticancer chemotherapy against carcinogen-induced breast cancer. Oncoimmunology. 2016;5:e1139275. doi:10.1080/2162402X.2016.1139275.
  • Le Naour J, Liu P, Zhao L, Adjemian S, Sztupinszki Z, Taieb J, Mulot C, Silvin A, Dutertre C-A, Ginhoux F, et al. A TLR3 ligand reestablishes chemotherapeutic responses in the context of FPR1deficiency. Cancer Discov. 2021;11:408–423. doi:10.1158/2159-8290.CD-20-0465.
  • Biselli E, Agliari E, Barra A, Bertani FR, Gerardino A, De Ninno A, Mencattini A, Di Giuseppe D, Mattei F, Schiavoni G, et al. Organs on chip approach: a tool to evaluate cancer -immune cells interactions. Sci Rep. 2017;7:12737. doi:10.1038/s41598-017-13070-3.
  • Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022;23:487–500. doi:10.1038/s41590-022-01132-2.
  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12:860–875. doi:10.1038/nrc3380.
  • Buque A, Bloy N, Perez-Lanzon M, Iribarren K, Humeau J, Pol JG, Levesque S, Mondragon L, Yamazaki T, Sato A, et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat Commun. 2020;11:3819. doi:10.1038/s41467-020-17644-0.
  • Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21:1128–1138. doi:10.1038/nm.3944.
  • Sztupinszki Z, Le Naour J, Vacchelli E, Laurent-Puig P, Delaloge S, Szallasi Z, Kroemer G. A major genetic accelerator of cancer diagnosis: rs867228 in FPR1. Oncoimmunology. 2021;10:1859064. doi:10.1080/2162402X.2020.1859064.
  • Delrieu L, Jacquet E, Segura-Ferlay C, Blanc E, Febvey-Combes O, Friedenreich C, Romieu G, Jacot W, Rios M, Heudel P-E, et al. Analysis of the StoRM cohort reveals physical activity to be associated with survival in metastatic breast cancer. Sci Rep. 2020;10:10757. doi:10.1038/s41598-020-67431-6.
  • Marinovich ML, Bernardi D, Macaskill P, Ventriglia A, Sabatino V, Houssami N. Agreement between digital breast tomosynthesis and pathologic tumour size for staging breast cancer, and comparison with standard mammography. Breast. 2019;43:59–66. doi:10.1016/j.breast.2018.11.001.
  • Wick G, Jansen-Durr P, Berger P, Blasko I, Grubeck-Loebenstein B. Diseases of aging. Vaccine. 2000;18:1567–1583. doi:10.1016/S0264-410X(99)00489-2.
  • Dean M, Carrington M, O’brien SJ. Balanced polymorphism selected by genetic versus infectious human disease. Annu Rev Genomics Hum Genet. 2002;3:263–292. doi:10.1146/annurev.genom.3.022502.103149.
  • Ferwerda B, McCall MB, Alonso S, Giamarellos-Bourboulis EJ, Mouktaroudi M, Izagirre N, Syafruddin D, Kibiki G, Cristea T, Hijmans A, et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci U S A. 2007;104:16645–16650. doi:10.1073/pnas.0704828104.
  • Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A, Gao J-L, Murphy PM, Wang JM. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci Rep. 2012;2:786. doi:10.1038/srep00786.
  • Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, Granick JL, Matsushima H, Takashima A, Iwakura Y, et al. Neutrophil-derived IL-1β is sufficient for abscess formation in immunity against staphylococcus aureus inmice. PLoS Pathog. 2012;8:e1003047. doi:10.1371/journal.ppat.1003047.
  • Oldekamp S, Pscheidl S, Kress E, Soehnlein O, Jansen S, Pufe T, Wang JM, Tauber SC, Brandenburg L-O. Lack of formyl peptide receptor 1 and 2 leads to more severe inflammation and higher mortality in mice with of pneumococcal meningitis. Immunology. 2014;143:447–461. doi:10.1111/imm.12324.
  • Zhang M, Gao JL, Chen K, Yoshimura T, Liang W, Gong W, Li X, Huang J, McDermott DH, Murphy PM, et al. A critical role of formyl peptide receptors in host defense against escherichia coli. J Immunol. 2020;204:2464–2473. doi:10.4049/jimmunol.1900430.
  • Osei-Owusu P, Charlton TM, Kim HK, Missiakas D, Schneewind O. FPR1 is the plague receptor on host immune cells. Nature. 2019;574:57–62. doi:10.1038/s41586-019-1570-z.
  • Vacchelli E, Le Naour J, Kroemer G. The ambiguous role of FPR1 in immunity and inflammation. Oncoimmunology. 2020;9:1760061. doi:10.1080/2162402X.2020.1760061.
  • Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Le Y, Gao J-L, Zhao J, Wang JM, Wang A, et al. Formylpeptide receptors mediate rapid neutrophil mobilization to accelerate wound healing. PLoS One. 2014;9:e90613. doi:10.1371/journal.pone.0090613.
  • Giebeler A, Streetz KL, Soehnlein O, Neumann U, Wang JM, Brandenburg LO, Mukhopadhyay P. Deficiency of formyl peptide receptor 1 and 2 is associated with increased inflammation and enhanced liver injury after LPS-stimulation. PLoS One. 2014;9:e100522. doi:10.1371/journal.pone.0100522.
  • Grommes J, Drechsler M, Soehnlein O. CCR5 and FPR1 mediate neutrophil recruitment in endotoxin-induced lung injury. J Innate Immun. 2014;6:111–116. doi:10.1159/000353229.
  • Cardini S, Dalli J, Fineschi S, Perretti M, Lungarella G, Lucattelli M. Genetic ablation of the fpr1 gene confers protection from smoking-induced lung emphysema in mice. Am J Respir Cell Mol Biol. 2012;47:332–339. doi:10.1165/rcmb.2012-0036OC.
  • Gao L, Zeng N, Yuan Z, Wang T, Chen L, Yang D, Xu D, Wan C, Wen F, Shen Y. Knockout of formyl peptide receptor-1 attenuates cigarette smoke–induced airway inflammation in mice. Front Pharmacol. 2021;12:632225. doi:10.3389/fphar.2021.632225.
  • Dorward DA, Lucas CD, Doherty MK, Chapman GB, Scholefield EJ, Conway Morris A, Felton JM, Kipari T, Humphries DC, Robb CT, et al. Novel role for endogenous mitochondrial formylated peptide-driven formyl peptide receptor 1 signalling in acute respiratory distress syndrome. Thorax. 2017;72:928–936. doi:10.1136/thoraxjnl-2017-210030.
  • Leslie J, Millar BJ, Del Carpio Pons A, Burgoyne RA, Frost JD, Barksby BS, Luli S, Scott J, Simpson AJ, Gauldie J, et al. FPR-1 is an important regulator of neutrophil recruitment and a tissue-specific driver of pulmonary fibrosis. JCI Insight. 2020;5. doi:10.1172/jci.insight.125937.
  • Scozzi D, Ibrahim M, Liao F, Lin X, Hsiao HM, Hachem R, Tague LK, Ricci A, Kulkarni HS, Huang HJ, et al. Mitochondrial damage–associated molecular patterns released by lung transplants are associated with primary graft dysfunction. Am J Transplant. 2019;19:1464–1477. doi:10.1111/ajt.15232.
  • D’amico R, Fusco R, Cordaro M, Siracusa R, Peritore AF, Gugliandolo E, Crupi R, Scuto M, Cuzzocrea S, Di Paola R, et al. Modulation of NLRP3 inflammasome through formyl peptide receptor 1 (Fpr-1) pathway as a new therapeutic target in bronchiolitis obliterans syndrome. Int J Mol Sci. 2020;21. doi:10.3390/ijms21062144.
  • Fusco R, D’amico R, Cordaro M, Gugliandolo E, Siracusa R, Peritore AF, Crupi R, Impellizzeri D, Cuzzocrea S, Di Paola R. Absence of formyl peptide receptor 1 causes endometriotic lesion regression in a mouse model of surgically-induced endometriosis. Oncotarget. 2018;9:31355–31366. doi:10.18632/oncotarget.25823.
  • Bihler K, Kress E, Esser S, Nyamoya S, Tauber SC, Clarner T, Stope MB, Pufe T, Brandenburg L-O. Formyl peptide Receptor 1-mediated glial cell activation in a mouse model of cuprizone-induced demyelination. J Mol Neurosci. 2017;62:232–243. doi:10.1007/s12031-017-0924-y.
  • Di Paola R, Fusco R, Gugliandolo E, D’amico R, Cordaro M, Impellizzeri D, Perretti M, Cuzzocrea S. Formyl peptide receptor 1 signalling promotes experimental colitis in mice. Pharmacol Res. 2019;141:591–601. doi:10.1016/j.phrs.2019.01.041.
  • Wollam J, Riopel M, Xu YJ, Johnson AMF, Ofrecio JM, Ying W, El Ouarrat D, Chan LS, Han AW, Mahmood NA, et al. Microbiota-produced N-Formyl peptide fMLF promotes obesity-induced glucose intolerance. Diabetes. 2019;68:1415–1426. doi:10.2337/db18-1307.
  • Gao JL, Weaver JD, Tuo J, Wang LQ, Siwicki M, Despres D, Lizak M, Schneider EH, Kovacs W, Maminishkis A, et al. Leukocyte chemotactic receptor Fpr1 protects against aging-related posterior subcapsular cataract formation. Faseb J. 2021;35:e21315. doi:10.1096/fj.202002135R.
  • Fusco R, Gugliandolo E, Siracusa R, Scuto M, Cordaro M, D’amico R, Evangelista M, Peli A, Peritore AF, Impellizzeri D, et al. Formyl peptide receptor 1 signaling in acute inflammation and neural differentiation induced by traumatic brain injury. Biology (Basel). 2020;9. doi:10.3390/biology9090238.
  • Li Z, Li Y, Han J, Zhu Z, Li M, Liu Q, Wang Y, Shi F-D. Formyl peptide receptor 1 signaling potentiates inflammatory brain injury. Sci Transl Med. 2021;13. doi:10.1126/scitranslmed.abe9890.
  • Duvvuri B, Baddour AA, Deane KD, Feser ML, Nelson JL, Demoruelle MK, Lood C. Mitochondrial N-formyl methionine peptides associate with disease activity as well as contribute to neutrophil activation in patients with rheumatoid arthritis. J Autoimmun. 2021;119:102630. doi:10.1016/j.jaut.2021.102630.
  • Kuley R, Stultz RD, Duvvuri B, Wang T, Fritzler MJ, Hesselstrand R, Nelson JL, Lood C. N-Formyl methionine peptide-mediated neutrophil activation in systemic sclerosis. Front Immunol. 2021;12:785275. doi:10.3389/fimmu.2021.785275.
  • Michailidou D, Duvvuri B, Kuley R, Cuthbertson D, Grayson PC, Khalidi NA, Koening CL, Langford CA, McAlear CA, Moreland LW, et al. Neutrophil activation in patients with anti-neutrophil cytoplasmic autoantibody-associated vasculitis and large-vessel vasculitis. Arthritis Res Ther. 2022;24:160. doi:10.1186/s13075-022-02849-z.
  • Kwon WY, Suh GJ, Jung YS, Park SM, Oh S, Kim SH, Lee AR, Kim JY, Kim H, Kim KA, et al. Circulating mitochondrial N-formyl peptides contribute to secondary nosocomial infection in patients with septic shock. Proc Natl Acad Sci U S A. pp.118. 2021. doi:10.1073/pnas.2018538118
  • Tamimi RM, Colditz GA, Hazra A, Baer HJ, Hankinson SE, Rosner B, Marotti J, Connolly JL, Schnitt SJ, Collins LC. Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012;131:159–167. doi:10.1007/s10549-011-1702-0.
  • Crispo A, Augustin LS, Grimaldi M, Nocerino F, Giudice A, Cavalcanti E, Di Bonito M, Botti G, De Laurentiis M, Rinaldo M, et al. Risk differences between prediabetes and diabetes according to breast cancer molecular subtypes. J Cell Physiol. 2017;232:1144–1150. doi:10.1002/jcp.25579.
  • Yang X, Eriksson M, Czene K, Lee A, Leslie G, Lush M, Wang J, Dennis J, Dorling L, Carvalho S, et al. Prospective validation of the BOADICEA multifactorial breast cancer risk prediction model in a large prospective cohort study. J Med Genet. 2022;59:1196–1205. doi:10.1136/jmg-2022-108806.
  • Pashayan N, Antoniou AC, Lee A, Wolfson M, Chiquette J, Eloy L, Eisen A, Stockley TL, Nabi H, Brooks JD, et al. Should age-dependent absolute risk thresholds be used for risk stratification in risk-stratified breast cancer screening? J Pers Med. pp.11. 2021. doi:10.3390/jpm11090916
  • Graffeo R, Rana HQ, Conforti F, Bonanni B, Cardoso MJ, Paluch-Shimon S, Pagani O, Goldhirsch A, Partridge AH, Lambertini M, et al. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: aTM, CHEK2, BARD1 and RAD51D. Breast. 2022;65:32–40. doi:10.1016/j.breast.2022.06.003.
  • Hughes E, Wagner S, Pruss D, Bernhisel R, Probst B, Abkevich V, Simmons T, Hullinger B, Judkins T, Rosenthal E, et al. Development and validation of a breast cancer polygenic risk score on the basis of genetic ancestry composition. JCO Precis Oncol. 2022;6:e2200084. doi:10.1200/PO.22.00084.