1,951
Views
2
CrossRef citations to date
0
Altmetric
Original Research

ELK3-CXCL16 axis determines natural killer cell cytotoxicity via the chemotactic activity of CXCL16 in triple negative breast cancer

, , , , , , , & show all
Article: 2190671 | Received 19 Oct 2022, Accepted 10 Mar 2023, Published online: 17 Mar 2023

References

  • Mayor M, Yang N, Sterman D, Jones DR, Adusumilli PS. Immunotherapy for non-small cell lung cancer: current concepts and clinical trials. Eur J Cardiothorac Surg. 2016;49(5):1324–14. doi:10.1093/ejcts/ezv371.
  • Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–482. doi:10.1038/nrclinonc.2017.43.
  • Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–1680. doi:10.1056/NEJM198812223192527.
  • Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–4557. doi:10.1158/1078-0432.CCR-11-0116.
  • Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z, Pasetto A, Langhan M, Shelton T, Prickett T, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24(6):724–730. doi:10.1038/s41591-018-0040-8.
  • Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH Jr. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol. 2020;27(Suppl 2):S87–97. doi:10.3747/co.27.5223.
  • O’donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151–167. doi:10.1038/s41571-018-0142-8.
  • Rohaan MW, Wilgenhof S, Haanen J. Adoptive cellular therapies: the current landscape. Virchows Arch. 2019;474(4):449–461. doi:10.1007/s00428-018-2484-0.
  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–510. doi:10.1038/ni1582.
  • Torres Cepeda TE, Alanis Guzman MG, Maiti R. Relationship between nutritional composition and anatomical parameters in sorghum (Sorghum bicolor L. Moench). Arch Latinoam Nutr. 1996;46:253–259.
  • Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000;356(9244):1795–1799. doi:10.1016/S0140-6736(00)03231-1.
  • Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200–218. doi:10.1038/s41573-019-0052-1.
  • Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell. 2017;32(2):135–154. doi:10.1016/j.ccell.2017.06.009.
  • Bald T, Krummel MF, Smyth MJ, Barry KC. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol. 2020;21(8):835–847. doi:10.1038/s41590-020-0728-z.
  • Li Y, Yin J, Li T, Huang S, Yan H, Leavenworth J, Wang X. NK cell-based cancer immunotherapy: from basic biology to clinical application. Sci China Life Sci. 2015;58(12):1233–1245. doi:10.1007/s11427-015-4970-9.
  • Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the Tumor Microenvironment on NK cell function in solid Tumors. Front Immunol. 2019;10:3038. doi:10.3389/fimmu.2019.03038.
  • Habif G, Crinier A, Andre P, Vivier E, Narni-Mancinelli E. Targeting natural killer cells in solid tumors. Cell Mol Immunol. 2019;16(5):415–422. doi:10.1038/s41423-019-0224-2.
  • Cozar B, Greppi M, Carpentier S, Narni-Mancinelli E, Chiossone L, Vivier E. Tumor-infiltrating natural killer cells. Cancer Discov. 2021;11(1):34–44. doi:10.1158/2159-8290.CD-20-0655.
  • Ali TH, Pisanti S, Ciaglia E, Mortarini R, Anichini A, Garofalo C, Tallerico R, Santinami M, Gulletta E, Ietto C, et al. Enrichment of CD56(dim)KIR + CD57 + highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nat Commun. 2014;5(1):5639. doi:10.1038/ncomms6639.
  • Rusakiewicz S, Semeraro M, Sarabi M, Desbois M, Locher C, Mendez R, Vimond N, Concha A, Garrido F, Isambert N, et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 2013;73(12):3499–3510. doi:10.1158/0008-5472.CAN-13-0371.
  • Chow MT, Luster AD. Chemokines in cancer. Cancer Immunol Res. 2014;2(12):1125–1131. doi:10.1158/2326-6066.CIR-14-0160.
  • Bule P, Aguiar SI, Aires-Da-Silva F, Dias JNR. Chemokine-directed Tumor microenvironment Modulation in Cancer Immunotherapy. Int J Mol Sci. 2021;22(18):9804. doi:10.3390/ijms22189804.
  • Zhao Q, Ren Y, Xie H, Yu L, Lu J, Jiang W, Xiao W, Zhu Z, Wan R, Li B. ELK3 mediated by ZEB1 facilitates the growth and metastasis of Pancreatic carcinoma by activating the Wnt/β-catenin pathway. Front Cell Dev Biol. 2021;9:700192. doi:10.3389/fcell.2021.700192.
  • Liu Z, Ren Z, Zhang C, Qian R, Wang H, Wang J, Zhang W, Liu B, Lian X, Wang Y, et al. ELK3: a new molecular marker for the diagnosis and Prognosis of Glioma. Front Oncol. 2021;11:608748. doi:10.3389/fonc.2021.608748.
  • Kim KS, Park JI, Oh N, Cho HJ, Park JH, Park KS. ELK3 expressed in lymphatic endothelial cells promotes breast cancer progression and metastasis through exosomal miRnas. Sci Rep. 2019;9(1):8418. doi:10.1038/s41598-019-44828-6.
  • Cho HJ, Oh N, Park JH, Kim KS, Kim HK, Lee E, Hwang S, Kim S-J, Park K-S. ZEB1 Collaborates with ELK3 to repress E-Cadherin expression in Triple-negative breast cancer cells. Mol Cancer Res. 2019;17(11):2257–2266. doi:10.1158/1541-7786.MCR-19-0380.
  • Park JD, Kim KS, Choi SH, Jo GH, Choi JH, Park SW, Ko E-S, Lee M, Lee D-K, Jang HJ, et al. ELK3 modulates the antitumor efficacy of natural killer cells against triple negative breast cancer by regulating mitochondrial dynamics. J ImmunoTher Cancer. 2022;10(7):e004825. doi:10.1136/jitc-2022-004825.
  • Kim HK, Park JD, Choi SH, Shin DJ, Hwang S, Jung HY, Park K-S. Functional link between miR-200a and ELK3 regulates the metastatic nature of breast cancer. Cancers (Basel). 2020;12(5):1225. doi:10.3390/cancers12051225.
  • Lee M, Cho HJ, Park KS, Jung HY. ELK3 controls Gastric cancer cell migration and invasion by regulating ECM remodeling-related genes. Int J Mol Sci. 2022;23(7):3709. doi:10.3390/ijms23073709.
  • Oh N, Park JI, Park JH, Kim KS, Lee DR, Park KS. The role of ELK3 to regulate peritumoral lymphangiogenesis and VEGF-C production in triple negative breast cancer cells. Biochem Biophys Res Commun. 2017;484(4):896–902. doi:10.1016/j.bbrc.2017.02.030.
  • Zhuo W, Jia L, Song N, Lu XA, Ding Y, Wang X, Song X, Fu Y, Luo Y. The CXCL12–CXCR4 Chemokine Pathway: a novel axis regulates Lymphangiogenesis. Clin Cancer Res. 2012;18(19):5387–5398. doi:10.1158/1078-0432.CCR-12-0708.
  • Tsoyi K, Geldart AM, Christou H, Liu X, Chung SW, Perrella MA. Elk-3 is a KLF4-regulated gene that modulates the phagocytosis of bacteria by macrophages. J Leukoc Biol. 2015;97(1):171–180. doi:10.1189/jlb.4A0214-087R.
  • Dazhi W, Zheng J, Chunling R. High ELK3 expression is associated with the VEGF-C/VEGFR-3 axis and gastric tumorigenesis and enhances infiltration of M2 macrophages. Future Med Chem. 2020;12(24):2209–2224. doi:10.4155/fmc-2019-0337.
  • Choi YH, Lim EJ, Kim SW, Moon YW, Park KS, An HJ. IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells. J ImmunoTher Cancer. 2019;7(1):168. doi:10.1186/s40425-019-0652-7.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262.
  • Jung HY, Fattet L, Tsai JH, Kajimoto T, Chang Q, Newton AC, Yang J. Apical–basal polarity inhibits epithelial–mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21(3):359–371. doi:10.1038/s41556-019-0291-8.
  • Kong SY, Kim KS, Kim J, Kim MK, Lee KH, Lee JY, Oh N, Park J-I, Park J-H, Heo S-H, et al. The ELK3-GATA3 axis orchestrates invasion and metastasis of breast cancer cells in vitro and in vivo. Oncotarget. 2016;7(40):65137–65146. doi:10.18632/oncotarget.11427.
  • Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, et al. Tcgabiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71. doi:10.1093/nar/gkv1507.
  • Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M, Anderson A, Hollande F, Hediyeh-Zadeh S, Behren A, Huntington ND, Davis MJ. A Gene signature predicting natural killer cell infiltration and improved Survival in Melanoma patients. Cancer Immunol Res. 2019;7(7):1162–1174. doi:10.1158/2326-6066.CIR-18-0500.
  • Grundemann C, Bauer M, Schweier O, von Oppen N, Lassing U, Saudan P, Becker K-F, Karp K, Hanke T, Bachmann MF, et al. Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J Immunol. 2006;176(3):1311–1315. doi:10.4049/jimmunol.176.3.1311.
  • Chockley PJ, Chen J, Chen G, Beer DG, Standiford TJ, Keshamouni VG. Epithelial-mesenchymal transition leads to NK cell-mediated metastasis-specific immunosurveillance in lung cancer. J Clin Invest. 2018;128(4):1384–1396. doi:10.1172/JCI97611.
  • Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11):2167–2176. doi:10.1182/blood-2009-08-238469.
  • Maghazachi AA. Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol. 2010;341:37–58.
  • Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 2022;29(1):10–21. doi:10.1038/s41417-021-00303-x.
  • Burugu S, Asleh-Aburaya K, Nielsen TO. Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer. 2017;24(1):3–15. doi:10.1007/s12282-016-0698-z.
  • Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17(9):1025–1036. doi:10.1038/ni.3518.
  • Wendel M, Galani IE, Suri-Payer E, Cerwenka A. Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res. 2008;68(20):8437–8445. doi:10.1158/0008-5472.CAN-08-1440.
  • Mikucki ME, Fisher DT, Matsuzaki J, Skitzki JJ, Gaulin NB, Muhitch JB, Ku AW, Frelinger JG, Odunsi K, Gajewski TF, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6(1):7458. doi:10.1038/ncomms8458.
  • Seo YD, Jiang X, Sullivan KM, Jalikis FG, Smythe KS, Abbasi A, Vignali M, Park JO, Daniel SK, Pollack SM, et al. Mobilization of CD8(+) T cells via CXCR4 Blockade Facilitates PD-1 Checkpoint therapy in human Pancreatic cancer. Clin Cancer Res. 2019;25(13):3934–3945. doi:10.1158/1078-0432.CCR-19-0081.
  • Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, Babb JS, Schneider RJ, Formenti SC, Dustin ML, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181(5):3099–3107. doi:10.4049/jimmunol.181.5.3099.
  • Yoon MS, Pham CT, Phan MT, Shin DJ, Jang YY, Park MH, Kim S-K, Kim S, Cho D. Irradiation of breast cancer cells enhances CXCL16 ligand expression and induces the migration of natural killer cells expressing the CXCR6 receptor. Cytotherapy. 2016;18(12):1532–1542. doi:10.1016/j.jcyt.2016.08.006.
  • Yang H, Schramek D, Adam R C, Keyes B E, Wang P, Zheng D, Fuchs E. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas. Elife. 2015;4:e10870. doi:10.7554/eLife.10870.