2,403
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Melanoma-associated repair-like Schwann cells suppress anti-tumor T-cells via 12/15-LOX/COX2-associated eicosanoid production

, , , , , , , , , , , , & show all
Article: 2192098 | Received 24 Jul 2022, Accepted 13 Mar 2023, Published online: 25 Mar 2023

References

  • Zahalka AH, Frenette PS. 2020. Nerves in cancer. Nat Rev Cancer. 20(3):143–10. doi:10.1038/s41568-019-0237-2.
  • Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS. 2013. Autonomic nerve development contributes to prostate cancer progression. Science. 341(6142):1236361. doi:10.1126/science.1236361.
  • Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC, Muha EA, Rhim AD, Davis BM. 2016. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A. 113(11):3078–3083. doi:10.1073/pnas.1512603113.
  • Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova N, Verhaegen M, Bichakjian C, Ward N, Dlugosz A, Wong S. 2015. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 16(4):400–412. doi:10.1016/j.stem.2015.02.006.
  • Zhao C-M, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman RA, Renz BW, et al. 2014. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 6(250):250ra115. doi:10.1126/scitranslmed.3009569.
  • Huang D, Su S, Cui X, Shen X, Zeng Y, Wu W, Chen J, Chen F, He C, Liu J, et al. 2014. Nerve fibers in breast cancer tissues indicate aggressive tumor progression. Medicine. 93(27):e172. doi:10.1097/MD.0000000000000172.
  • Zhou Y, Shurin GV, Zhong H, Bunimovich YL, Han B, Shurin MR. 2018. Schwann cells augment cell spreading and Metastasis of lung cancer. Cancer Res. 78(20):5927–5939. doi:10.1158/0008-5472.CAN-18-1702.
  • Sroka IC, Chopra H, Das L, Gard JM, Nagle RB, Cress AE. 2016. Schwann cells increase prostate and pancreatic tumor cell invasion using Laminin Binding A6 Integrin. J Cell Biochem. 117(2):491–499. doi:10.1002/jcb.25300.
  • Silva VM, Gomes JA, Tenorio LPG, de Omena Neta GC, da Costa Paixão K, Duarte AKF, da Silva GCB, Ferreira RJS, Koike BDV, de Sales Marques C, et al. 2019. Schwann cell reprogramming and lung cancer progression: a meta-analysis of transcriptome data. Oncotarget. 10(68):7288–7307. doi:10.18632/oncotarget.27204.
  • Shurin GV, Kruglov O, Ding F, Lin Y, Hao X, Keskinov AA, You Z, Lokshin AE, LaFramboise WA, Falo LD, et al. 2019. Melanoma-induced reprogramming of Schwann Cell Signaling aids tumor growth. Cancer Res. 79(10):2736–2747. doi:10.1158/0008-5472.CAN-18-3872.
  • Martyn GV, Shurin GV, Keskinov AA, Bunimovich YL, Shurin MR. 2019. Schwann cells shape the neuro-immune environs and control cancer progression. Cancer Immunol Immunother. 68(11):1819–1829. doi:10.1007/s00262-018-02296-3.
  • Demir IE, Kujundzic K, Pfitzinger PL, Saricaoglu ÖC, Teller S, Kehl T, Reyes CM, Ertl LS, Miao Z, Schall TJ, et al. 2017. Early pancreatic cancer lesions suppress pain through CXCL12-mediated chemoattraction of Schwann cells. Proc Natl Acad Sci U S A. 114(1):E85–94. doi:10.1073/pnas.1606909114.
  • Deborde S, Wong RJ. 2017. How Schwann cells facilitate cancer progression in nerves. Cell Mol Life Sci. 74(24):4405–4420. doi:10.1007/s00018-017-2578-x.
  • Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, Chernichenko N, Lee S-Y, Barajas F, Chen C-H, et al. 2016. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest. 126(4):1538–1554. doi:10.1172/JCI82658.
  • Bunimovich YL, Keskinov AA, Shurin GV, Shurin MR. 2017. Schwann cells: a new player in the tumor microenvironment. Cancer Immunol Immunother. 66(8):959–968. doi:10.1007/s00262-016-1929-z.
  • Roger E, Martel S, Bertrand-Chapel A, Depollier A, Chuvin N, Pommier RM, Yacoub K, Caligaris C, Cardot-Ruffino V, Chauvet V, et al. 2019. Schwann cells support oncogenic potential of pancreatic cancer cells through TGFβ signaling. Cell Death Dis. 10(12):886. doi:10.1038/s41419-019-2116-x.
  • Deborde S, Gusain L, Powers A, Marcadis A, Yu Y, Chen C-H, Frants A, Kao E, Tang LH, Vakiani E, et al. 2022. Reprogrammed Schwann cells organize into dynamic tracks that promote Pancreatic Cancer invasion. Cancer Discov. 12(10):2454–2473. doi:10.1158/2159-8290.CD-21-1690.
  • Stierli S, Imperatore V, Lloyd AC. 2019. Schwann cell plasticity-roles in tissue homeostasis, regeneration, and disease. Glia. 67(11):2203–2215. doi:10.1002/glia.23643.
  • Salvo E, Tu NH, Scheff NN, Dubeykovskaya ZA, Chavan SA, Aouizerat BE, Ye Y. 2021. TNFα promotes oral cancer growth, pain, and Schwann cell activation. Sci Rep. 11(1):1840. doi:10.1038/s41598-021-81500-4.
  • Su D, Guo X, Huang L, Ye H, Li Z, Lin L, Chen R, Zhou Q. 2020. Tumor-neuroglia interaction promotes pancreatic cancer metastasis. Theranostics. 10(11):5029–5047. doi:10.7150/thno.42440.
  • Deborde S, Wong RJ. 2022. The role of Schwann cells in cancer. Adv Biol. 6(9):e2200089. doi:10.1002/adbi.202200089.
  • Fujii-Nishimura Y, Yamazaki K, Masugi Y, Douguchi J, Kurebayashi Y, Kubota N, Ojima H, Kitago M, Shinoda M, Hashiguchi A, et al. 2018. Mesenchymal-epithelial transition of pancreatic cancer cells at perineural invasion sites is induced by Schwann cells. Pathol Int. 68(4):214–223. doi:10.1111/pin.12641.
  • Demir IE, Boldis A, Pfitzinger PL, Teller S, Brunner E, Klose N, Kehl T, Maak M, Lesina M, Laschinger M, et al. 2014. Investigation of Schwann cells at neoplastic cell sites before the onset of cancer invasion. J Nat Cancer Inst. 106(8). doi:10.1093/jnci/dju184.
  • Zhang SH, Shurin GV, Khosravi H, Kazi R, Kruglov O, Shurin MR, Bunimovich YL. 2020. Immunomodulation by Schwann cells in disease. Cancer Immunol Immunother. 69(2):245–253. doi:10.1007/s00262-019-02424-7.
  • Shurin MR, Shurin GV, Zlotnikov SB, Bunimovich YL. 2020. The neuroimmune axis in the tumor microenvironment. J Immunol. 204(2):280–285. doi:10.4049/jimmunol.1900828.
  • Shurin GV, Vats K, Kruglov O, Bunimovich YL, Shurin MR. 2022. Tumor-Induced T cell polarization by Schwann cells. Cells. 11(22):3541. doi:10.3390/cells11223541.
  • Griffin JW, Thompson WJ. 2008. Biology and pathology of nonmyelinating Schwann cells. Glia. 56(14):1518–1531. doi:10.1002/glia.20778.
  • Jessen KR, Mirsky R. 2016. The repair Schwann cell and its function in regenerating nerves. J Physiol. 594(13):3521–3531. doi:10.1113/JP270874.
  • Debbache J, Parfejevs V, Sommer L. 2018. Cre-driver lines used for genetic fate mapping of neural crest cells in the mouse: an overview. Genesis. 56(6–7):e23105. doi:10.1002/dvg.23105.
  • Leone DP, Genoud S, Atanasoski S, Grausenburger R, Berger P, Metzger D, Macklin WB, Chambon P, Suter U. 2003. Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci. 22(4):430–440. doi:10.1016/S1044-7431(03)00029-0.
  • Doerflinger NH, Macklin WB, Popko B. 2003. Inducible site-specific recombination in myelinating cells. Genesis. 35(1):63–72. doi:10.1002/gene.10154.
  • Parfejevs V, Debbache J, Shakhova O, Schaefer SM, Glausch M, Wegner M, Suter U, Riekstina U, Werner S, Sommer L. 2018. Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun. 9(1):236. doi:10.1038/s41467-017-01488-2.
  • Gomez-Sanchez JA, Pilch KS, van der Lans M, Fazal SV, Benito C, Wagstaff LJ, Mirsky R, Jessen KR. 2017. After nerve injury, lineage tracing shows that myelin and remak Schwann cells Elongate extensively and branch to form repair Schwann cells, which shorten radically on Remyelination. J Neurosci. 37(37):9086–9099. doi:10.1523/JNEUROSCI.1453-17.2017.
  • Weiss T, Taschner-Mandl S, Bileck A, Slany A, Kromp F, Rifatbegovic F, Frech C, Windhager R, Kitzinger H, Tzou C-H, et al. 2016. Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype. Glia. 64(12):2133–2153. doi:10.1002/glia.23045.
  • Meeker RB, Williams KS. 2015. The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural regener res. 10(5):721–725. doi:10.4103/1673-5374.156967.
  • Singh NK, Rao GN. 2019. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res. 73:28–45. doi:10.1016/j.plipres.2018.11.001.
  • Tan R, Yan B, Wang C, Zhang L, Mishra SK. 2022. The role of 12/15-Lipoxygenase and its various metabolites generated from multiple polyunsaturated fatty acids as Substrates in Inflammatory Responses. Biomed Res Int. 2022:4589191. doi:10.1155/2022/4589191.
  • Derada Troletti C, Enzmann G, Chiurchiu V, Kamermans A, Tietz SM, Norris PC, Jahromi NH, Leuti A, van der Pol SMA, Schouten M, et al. 2021. Pro-resolving lipid mediator lipoxin A4 attenuates neuro-inflammation by modulating T cell responses and modifies the spinal cord lipidome. Cell Rep. 35(9):109201. doi:10.1016/j.celrep.2021.109201.
  • Foster DS, Jones RE, Ransom RC, Longaker MT, Norton JA. 2018. The evolving relationship of wound healing and tumor stroma. JCI Insight. 3(18). doi:10.1172/jci.insight.99911.
  • Hua Y, Bergers G. 2019. Tumors vs. Chronic wounds: an immune cell’s perspective. Front Immunol. 10:2178. doi:10.3389/fimmu.2019.02178.
  • Peta KT, Ambele MA, Pepper MS, Zhang X-L. 2021. Similarities between Tumour immune response and chronic wound microenvironment: influence of Mesenchymal Stromal/Stem cells. J Immunol Res. 2021:6649314. doi:10.1155/2021/6649314.
  • Kalluri R. 2016. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16(9):582–598. doi:10.1038/nrc.2016.73.
  • McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. 2021. Neutrophil dynamics in the tumor microenvironment. J Clin Invest. 131(6). doi:10.1172/JCI143759.
  • Boutilier AJ, Elsawa SF. 2021. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 22(13):6995. doi:10.3390/ijms22136995.
  • Zhou Y, Li J, Han B, Zhong R, Zhong H. 2020. Schwann cells promote lung cancer proliferation by promoting the M2 polarization of macrophages. Cell Immunol. 357:104211. doi:10.1016/j.cellimm.2020.104211.