1,926
Views
0
CrossRef citations to date
0
Altmetric
Original Research

CARD9 deficiency promotes pancreatic cancer growth by blocking dendritic cell maturation via SLC6A8-mediated creatine transport

ORCID Icon, , , , , , , , , & ORCID Icon show all
Article: 2204015 | Received 23 Dec 2022, Accepted 13 Apr 2023, Published online: 19 Apr 2023

References

  • Da Y, Liu Y, Hu Y, Liu W, Ma J, Lu N, Zhang C, Zhang C. STING agonist cGAMP enhances anti-tumor activity of CAR-NK cells against pancreatic cancer. OncoImmunology. 2022;21(1):2054105. doi:10.1080/2162402X.2022.2054105.
  • Li X, Gulati M, Larson AC, Solheim JC, Jain M, Kumar S, Batra SK. Immune checkpoint blockade in pancreatic cancer: trudging through the immune desert. Semin Cancer Biol. 2022;86:14–15. doi:10.1016/j.semcancer.2022.08.009.
  • O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151–167. doi:10.1038/s41571-018-0142-8.
  • Lau SP, van Montfoort N, Kinderman P, Lukkes M, Klaase L, van Nimwegen M, van Gulijk M, Dumas J, Mustafa DAM, Lievense SLA, et al. Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. J ImmunoTher Cancer. 2020;8(2):e000772. doi:10.1136/jitc-2020-000772.
  • Yang J, Shangguan J, Eresen A, Li Y, Wang J, Zhang Z. Dendritic cells in pancreatic cancer immunotherapy: vaccines and combination immunotherapies. Pathol Res Pract. 2019;215(12):152691. doi:10.1016/j.prp.2019.152691.
  • Lin JH, Huffman AP, Wattenberg MM, Walter DM, Carpenter EL, Feldser DM, Beatty GL, Furth EE, Vonderheide RH. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J Exp Med. 2020;217(8):e20200816. doi:10.1084/jem.20190673.
  • Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL, Hogg GD, Tang JP, Baer JM, Mpoy C, et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell. 2020;37(3):289–307. doi:10.1016/j.ccell.2020.02.008.
  • Shangguan A, Shang N, Figini M, Pan L, Yang J, Ma Q, Hu S, Eresen A, Sun C, Wang B, et al. Prophylactic dendritic cell vaccination controls pancreatic cancer growth in a mouse model. Cytotherapy. 2020;2(1):6–15. doi:10.1016/j.jcyt.2019.12.001.
  • Lau SP, Klaase L, Vink M, Dumas J, Bezemer K, van Krimpen A, van der Breggen R, Wismans LV, Doukas M, de Koning W, et al. Autologous dendritic cells pulsed with allogeneic tumour cell lysate induce tumour-reactive T-cell responses in patients with pancreatic cancer: a phase I study. Eur J Cancer. 2022;169:20–31. doi:10.1016/j.ejca.2022.03.015.
  • Giovanelli P, Sandoval TA, Cubillos-Ruiz JR. Dendritic cell metabolism and function in tumors. Trends Immunol. 2019;40(8):699–718. doi:10.1016/j.it.2019.06.004.
  • Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of dendritic cells in tumor microenvironment: for immunotherapy. Front Immunol. 2021;12:613492. doi:10.3389/fimmu.2021.613492.
  • Ray A, Song Y, Du T, Tai Y-T, Chauhan D, Anderson KC. Targeting tryptophan catabolic kynurenine pathway enhances antitumor immunity and cytotoxicity in multiple myeloma. Leukemia. 2020;34(2):567–577. doi:10.1038/s41375-019-0558-x.
  • Liu X, Jiang B, Hao H, Liu Z. CARD9 signaling, inflammation, and diseases. Front Immunol. 2022;13:880879. doi:10.3389/fimmu.2022.880879.
  • Jeantin L, Plu I, Amador MDM, Maillart E, Lanternier F, Pourcher V, Davy V. Pearls & Oy-sters: spinal cord candidiasis linked to CARD9 deficiency masquerading as a longitudinally extensive transverse myelitis. Neurology. 2022;99(11):475–479. doi:10.1212/WNL.0000000000200992.
  • Zhong X, Chen B, Yang L, Yang Z. Card9 as a critical regulator of tumor development. Cancer Lett. 2019;451:150–155. doi:10.1016/j.canlet.2019.03.001.
  • Zhang H, Wang Y, Men H, Zhou W, Zhou S, Liu Q, Cai L. CARD9 regulation and its role in cardiovascular diseases. Int J Biol Sci. 2022;18(3):970–982. doi:10.7150/ijbs.65979.
  • Tian C, Tuo YL, Lu Y, Xu C-R, Xiang M. The role of CARD9 in metabolic diseases. Curr Med Sci. 2020;40(2):199–205. doi:10.1007/s11596-020-2166-4.
  • Qu J, Liu L, Xu Q, Ren J, Xu Z, Dou H, Shen S, Hou Y, Mou Y, Wang T. CARD9 prevents lung cancer development by suppressing the expansion of myeloid-derived suppressor cells and IDO production. Int J Cancer. 2019;145(8):2225–2237. doi:10.1002/ijc.32355.
  • Malik A, Sharma D, Malireddi RKS, Guy CS, Chang T-C, Olsen SR, Neale G, Vogel P, Kanneganti T-D. SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. Immunity. 2018;49(3):515–530. doi:10.1016/j.immuni.2018.08.024.
  • Loo JM, Scherl A, Nguyen A, Man F, Weinberg E, Zeng Z, Saltz L, Paty P, Tavazoie S. Extracellular metabolic energetics can promote cancer progression. Cell. 2015;160(3):393–406. doi:10.1016/j.cell.2014.12.018.
  • Di Biase S, Ma X, Wang X, Yu J, Wang Y-C, Smith DJ, Zhou Y, Li Z, Kim YJ, Clarke N, et al. Creatine uptake regulates CD8 T cell antitumor immunity. J Exp Med. 2019;216(12):2869–2882. doi:10.1084/jem.20182044.
  • Ji L, Zhao X, Zhang B, Kang L, Song W, Zhao B, Xie W, Chen L, Hu X. Slc6a8-mediated creatine uptake and accumulation reprogram macrophage polarization via regulating cytokine responses. Immunity. 2019;51(2):272–284. doi:10.1016/j.immuni.2019.06.007.
  • Zhang L, Bu P. The two sides of creatine in cancer. Trends Cell Biol. 2022;32(5):380–390. doi:10.1016/j.tcb.2021.11.004.
  • Elgebaly SA, Todd R, Kreutzer DL, Christenson R, El-Khazragy N, Arafa RK, Rabie MA, Mohamed AF, Ahmed LA, El Sayed NS. Nourin-associated miRnas: novel inflammatory monitoring markers for cyclocreatine phosphate therapy in heart failure. Int J Mol Sci. 2021;22(7):3575. doi:10.3390/ijms22073575.
  • Munisvaradass R, Kumar S, Govindasamy C, Alnumair K, Mok P. Human CD3+ T-Cells with the Anti-ERBB2 chimeric antigen receptor exhibit efficient targeting and induce apoptosis in erbb2 overexpressing breast cancer cells. Int J Mol Sci. 2017;18(9):1797. doi:10.3390/ijms18091797.
  • Yan L, Tan Y, Chen G, Fan J, Zhang J. Harnessing metabolic reprogramming to improve cancer immunotherapy. Int J Mol Sci. 2021;22(19):10268. doi:10.3390/ijms221910268.
  • Li DD, Jawale CV, Zhou C, Lin L, Trevejo-Nunez GJ, Rahman SA, Mullet SJ, Das J, Wendell SG, Delgoffe GM, et al. Fungal sensing enhances neutrophil metabolic fitness by regulating antifungal Glut1 activity. Cell Host & Microbe. 2022;30(4):530–544. doi:10.1016/j.chom.2022.02.017.
  • Plesca I, Benesova I, Beer C, Sommer U, Müller L, Wehner R, Heiduk M, Aust D, Baretton G, Bachmann MP, et al. Clinical significance of tumor-infiltrating conventional and plasmacytoid dendritic cells in pancreatic ductal adenocarcinoma. Cancers. 2022;14(5):1216. doi:10.3390/cancers14051216.
  • Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X, Weilbaecher KN, Hawkins WG, Ma C, Fields RC, et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat Commun. 2018;9(1):1250. doi:10.1038/s41467-018-03600-6.
  • Li J, Ding H, Meng Y, Li G, Fu Q, Guo Q, Yin Z, Ye Z, Zhou H, Shen N. Taurine metabolism aggravates the progression of lupus by promoting the function of plasmacytoid dendritic cells. Arthritis Rheumatol. 2020;72(12):2106–2117. doi:10.1002/art.41419.
  • Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y, Cairns NJ, Kambal A, et al. TREM2 maintains microglial metabolic fitness in alzheimer’s disease. Cell. 2017;170(4):649–663. doi:10.1016/j.cell.2017.07.023.
  • Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021 Jul 12;6(1):263. doi:10.1038/s41392-021-00658-5.
  • Zeidi M, Kim HJ, Werth VP. Increased myeloid dendritic cells and TNF-α expression predicts poor response to hydroxychloroquine in cutaneous lupus erythematosus. J Invest Dermatol. 2019;139(2):324–332. doi:10.1016/j.jid.2018.07.041.