1,854
Views
0
CrossRef citations to date
0
Altmetric
Trial Watch

Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment

, & ORCID Icon
Article: 2226535 | Received 23 May 2023, Accepted 13 Jun 2023, Published online: 18 Jun 2023

References

  • Kessel D. Photodynamic therapy: a brief history. J Clin Med. 2019;8(10):1581. doi:10.3390/jcm8101581.
  • Kessel D, Thomas J. Dougherty: an appreciation. Photochem Photobiol. 2020;96(3):454–20. doi:10.1111/php.13144.
  • Dabrowski JM, Arnaut LG. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci. 2015;14(10):1765–1780. doi:10.1039/c5pp00132c.
  • Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci. 2021;20(11):1497–1545. doi:10.1007/s43630-021-00102-1.
  • Chen B, Pogue BW, Hoopes PJ, Hasan T. Vascular and cellular targeting for photodynamic therapy. Crit Rev Eukaryot Gene Expr. 2006;16(4):279–306. doi:10.1615/CritRevEukarGeneExpr.v16.i4.10.
  • Rocha LB, Gomes-da-Silva LC, Dąbrowski JM, Arnaut LG. Elimination of primary tumours and control of metastasis with rationally designed bacteriochlorin photodynamic therapy regimens. Eur J Cancer. 2015;51(13):1822–1830. doi:10.1016/j.ejca.2015.06.002.
  • Kalka K, Merk H, Mukhtar H. Photodynamic therapy in dermatology. J Am Acad Dermatol. 2000;42(3):389–413. doi:10.1016/S0190-9622(00)90209-3.
  • Intelligence M. Photodynamic therapy market - growth, trends, COVID-19, impact, and forecasts (2023-2028). Accessed 2023 April, 2. https://www.mordorintelligence.com/industry-reports/photodynamic-therapy-market%0A
  • Report TM Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2022-2031. Accessed 2023 April 2. https://www.transparencymarketresearch.com/photodynamic-therapy-market.html
  • Beljanski V. Photofrin. XPharm: Compr Pharmacol Ref. 2007:1–4. Elsevier. 10.1016/B978-008055232-3.63713-4.
  • Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today. 1999;4(11):507–517. doi:10.1016/S1359-6446(99)01412-9.
  • Pereira SP, Ayaru L, Ackroyd R, Mitton D, Fullarton G, Zammit M, Grzebieniak Z, Messmann H, Ortner M-A, Gao L, et al. The pharmacokinetics and safety of porfimer after repeated administration 30-45 days apart to patients undergoing photodynamic therapy. Aliment Pharmacol Ther. 2010;32(6):821–827. doi:10.1111/j.1365-2036.2010.04400.x.
  • Bellnier DA, Greco WR, Loewen GM, Nava H, Oseroff AR, Dougherty TJ. Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX. Lasers Surg Med. 2006;38(5):439–444. doi:10.1002/lsm.20340.
  • Grahn MF, McGuinness A, Benzie R, Boyle R, de Jode ML, Dilkes MG, Abbas B, Williams NS. Intracellular uptake, absorption spectrum and stability of the bacteriochlorin photosensitizer 5,10,15, 20-tetrakis (m-hydroxyphenyl) bacteriochlorin (mTHPBC). Comparison with 5,10,15,20-tetrakis (m-hydroxyphenyl) chlorin (mTHPC). J Photochem Photobiol B Biol. 1997;37(3):261–266. doi:10.1016/S1011-1344(96)07421-0.
  • Spikes JD, Bommer JC. Photosensitizing properties of mono-l-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. J Photochem Photobiol B. 1993;17(2):135–143. doi:10.1016/1011-1344(93)80006-U.
  • Senge MO, Brandt JC. Temoporfin (Foscan®, 5,10,15,20-Tetra(m-hydroxyphenyl)chlorin)-A Second-generation Photosensitizer†,‡. Photochem Photobiol. 2011;87(6):1240–1296. doi:10.1111/j.1751-1097.2011.00986.x.
  • Kato H, Furukawa K, Sato M, Okunaka T, Kusunoki Y, Kawahara M, Fukuoka M, Miyazawa T, Yana T, Matsui K, et al. Phase II clinical study of photodynamic therapy using mono-l-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003;42(1):103–111. doi:10.1016/S0169-5002(03)00242-3.
  • Edrei R, Gottfried V, Van Lier JE, Kimel S. Sulfonated Phthalocyanines: photophysical properties, in vitro cell uptake and structure-activity relationships. J Porphyr Phthalocyanines. 1998;2(03):191–199. doi:10.1002/(SICI)1099-1409(199805/06)2:3<191:AID-JPP65>3.0.CO;2-4.
  • Sokolov VV, Chissov VI, Yakubovskaya RI, Aristarkhova E.I, Filonenko E.V, Belous T.A, Vorozhtsov G.N, Zharkova N.N, Smirnov V.V, Zhitkova M.B. Photodynamic therapy (PDT) of malignant tumors by photosensitzer photosens: results of 45 clinical cases. In: Ehrenberg B, Jori G Moan J editors; 1996. pp. 281–287. 10.1117/12.230943.
  • Sekkat N, Bergh HVD, Nyokong T, Lange N. Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules. 2011;17(1):98–144. doi:10.3390/molecules17010098.
  • Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-targeted delivery of photosensitizers for cancer treatment. Molecules. 2020;25(22):5317. doi:10.3390/molecules25225317.
  • Sandland J, Boyle RW. Photosensitizer Antibody–Drug Conjugates: past, Present, and Future. Bioconjug Chem. 2019;30(4):975–993. doi:10.1021/acs.bioconjchem.9b00055.
  • Gomes-da-Silva LC, Kepp O, Kroemer G. Regulatory approval of photoimmunotherapy: photodynamic therapy that induces immunogenic cell death. Oncoimmunology. 2020;9(1). doi:10.1080/2162402X.2020.1841393.
  • Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H. Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 2011;17(12):1685–1691. doi:10.1038/nm.2554.
  • Furusawa A, Choyke PL, Kobayashi H. NIR-PIT: will it become a standard cancer treatment? Front Oncol. 2022;12:12. doi:10.3389/fonc.2022.1008162.
  • Jeffes E. Levulan ®: the first approved topical photosensitizer for the treatment of actinic keratosis. J Dermatolog Treat. 2002;13(sup1):s19–s23. doi:10.1080/095466302317414663.
  • Farberg AS, Marson JW, Soleymani T. Advances in photodynamic therapy for the treatment of actinic keratosis and nonmelanoma skin cancer: a narrative review. Dermatol Ther (Heidelb). 2023;13(3):689–716. doi:10.1007/s13555-023-00888-1.
  • Geavlete B, Mulţescu R, Georgescu D, Geavlete P. Hexvix blue light fluorescence cystoscopy–a promising approach in diagnosis of superficial bladder tumors. J Med Life. 2008;1(3):355–362. http://www.ncbi.nlm.nih.gov/pubmed/20108513
  • Cruess AF, Zlateva G, Pleil AM, Wirostko B. Photodynamic therapy with verteporfin in age-related macular degeneration: a systematic review of efficacy, safety, treatment modifications and pharmacoeconomic properties. Acta Ophthalmol. 2009;87(2):118–132. doi:10.1111/j.1755-3768.2008.01218.x.
  • Aveline B, Hasan T, Redmond RW. PHOTOPHYSICAL and PHOTOSENSITIZING PROPERTIES of BENZOPORPHYRIN DERIVATIVE MONOACID RING a (BPD-MA). Photochem Photobiol. 1994;59(3):328–335. doi:10.1111/j.1751-1097.1994.tb05042.x.
  • Houle J-M, Strong A. Clinical Pharmacokinetics of Verteporfin. J Clin Pharmacol. 2002;42(5):547–557. doi:10.1177/00912700222011607.
  • Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, Kent E, Bown SG, Hasan T, Pogue BW, et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer. 2014;110(7):1698–1704. doi:10.1038/bjc.2014.95.
  • Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC. Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity. Biochim Biophys Acta - Rev Cancer. 2019;1872(2):188308. doi:10.1016/j.bbcan.2019.07.003.
  • Korbelik M, Sun J. Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunol Immunother. 2006;55(8):900–909. doi:10.1007/s00262-005-0088-4.
  • Korbelik M. Cancer vaccines generated by photodynamic therapy. Photochem Photobiol Sci. 2011;10(5):664–669. doi:10.1039/c0pp00343c.
  • Vedunova M, Turubanova V, Vershinina O, Savyuk M, Efimova I, Mishchenko T, Raedt R, Vral A, Vanhove C, Korsakova D, et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Disease. 2022;13(12):1062. doi:10.1038/s41419-022-05514-0.
  • Hendrzak-Henion JA, Knisely TL, Cincotta L, Cincotta E, Cincotta AH. Role of the immune system in mediating the antitumor effect of benzophenothiazine photodynamic therapy. Photochem Photobiol. 1999;69(5):575–581. doi:10.1111/j.1751-1097.1999.tb03330.x.
  • Kabingu E, Vaughan L, Owczarczak B, Ramsey KD, Gollnick SO. CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells. Br J Cancer. 2007;96(12):1839–1848. doi:10.1038/sj.bjc.6603792.
  • Korbelik M, Cecic I. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Lett. 1999;137(1):91–98. doi:10.1016/S0304-3835(98)00349-8.
  • Wachowska M, Gabrysiak M, Muchowicz A, Bednarek W, Barankiewicz J, Rygiel T, Boon L, Mroz P, Hamblin MR, Golab J, et al. 5-Aza-2′-deoxycytidine potentiates antitumour immune response induced by photodynamic therapy. Eur J Cancer. 2014;50(7):1370–1381. doi:10.1016/j.ejca.2014.01.017.
  • Kleinovink JW, Fransen MF, Löwik CW, Ossendorp F. Photodynamic-immune checkpoint therapy eradicates local and distant tumors by CD8+ T Cells. Cancer Immunol Res. 2017;5(10):832–838. doi:10.1158/2326-6066.CIR-17-0055.
  • Lobo SA, Gomes-da-Silva LC, Rodrigues-Santos P, Cabrita A, Santos-Rosa M, Arnaut LG. Immune responses after vascular photodynamic therapy with redaporfin. J Clin Med. 2019;9(1):104. doi:10.3390/jcm9010104.
  • Zheng Y, Yin G, Le V, Zhang A, Chen S, Liang X, Liu J. Photodynamic-therapy activates immune response by disrupting immunity homeostasis of tumor cells, which generates vaccine for cancer therapy. Int J Biol Sci. 2016;12(1):120–132. doi:10.7150/ijbs.12852.
  • Mroz P, Vatansever F, Muchowicz A, Hamblin MR. Photodynamic therapy of murine mastocytoma induces specific immune responses against the cancer/testis antigen P1A. Cancer Res. 2013;73(21):6462–6470. doi:10.1158/0008-5472.CAN-11-2572.
  • Mroz P, Szokalska A, Wu MX, Hamblin MR. Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response. Mosley RL, ed. PLoS One. 2010;5(12):e15194. doi:10.1371/journal.pone.0015194.
  • Shams M, Owczarczak B, Manderscheid-Kern P, Bellnier DA, Gollnick SO. Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunol Immunother. 2015;64(3):287–297. doi:10.1007/s00262-014-1633-9.
  • Cantl G, Lattuada D, Nicolin A, Taroni P, Valentinl G, Cubeddu R. Antitumor immunity induced by photodynamic therapy with aluminum disulfonated phthalocyanines and laser light. Anticancer Drugs. 1994;5(4):443–447. doi:10.1097/00001813-199408000-00009.
  • Preise D, Oren R, Glinert I, Kalchenko V, Jung S, Scherz A, Salomon Y. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunol Immunother. 2009;58(1):71–84. doi:10.1007/s00262-008-0527-0.
  • Yeung H-Y, Lo P-C, Ng DKP, Fong W-P. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol. 2017;14(2):223–234. doi:10.1038/cmi.2015.84.
  • Donohoe C, Schaberle FA, Rodrigues FMS, Gonçalves NPF, Kingsbury CJ, Pereira MM, Senge MO, Gomes-da-Silva LC, Arnaut LG. Unraveling the pivotal role of atropisomerism for cellular internalization. J Am Chem Soc. 2022;144(33):15252–15265. doi:10.1021/jacs.2c05844.
  • Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022;23(4):487–500. doi:10.1038/s41590-022-01132-2.
  • Gollnick SO, Evans SS, Baumann H, Owczarczak B, Maier P, Vaughan L, Wang WC, Unger E, Henderson BW. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer. 2003;88(11):1772–1779. doi:10.1038/sj.bjc.6600864.
  • Cecic I, Parkins CS, Korbelik M. Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors¶. Photochem Photobiol. 2001;74(5):712. doi:10.1562/0031-8655(2001)074<0712:IOSNRI>2.0.CO;2.
  • Maeding N, Verwanger T, Krammer B. Boosting tumor-specific immunity using PDT. Cancers Basel. 2016;8(10):91. doi:10.3390/cancers8100091.
  • Krosl G, Korbelik M, Dougherty G. Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. Br J Cancer. 1995;71(3):549–555. doi:10.1038/bjc.1995.108.
  • Kousis PC, Henderson BW, Maier PG, Gollnick SO. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res. 2007;67(21):10501–10510. doi:10.1158/0008-5472.CAN-07-1778.
  • Garg AD, Vandenberk L, Fang S, Fasche T, Van Eygen S, Maes J, Van Woensel M, Koks C, Vanthillo N, Graf N, et al. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ. 2017;24(5):832–843. doi:10.1038/cdd.2017.15.
  • Brackett CM, Muhitch JB, Evans SS, Gollnick SO. IL-17 promotes neutrophil entry into tumor-draining lymph nodes following induction of sterile inflammation. J Immunol. 2013;191(8):4348–4357. doi:10.4049/jimmunol.1103621.
  • Lobo CS, Gomes-da-Silva LC, Arnaut LG. Potentiation of systemic anti-tumor immunity with photodynamic therapy using porphyrin derivatives. <source/>. 2022:279–344. doi:10.1142/9789811246760_0222.
  • Beltrán Hernández I, Yu Y, Ossendorp F, Korbelik M, Oliveira S. Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: clinical recommendations. J Clin Med. 2020;9(2):333. doi:10.3390/jcm9020333.
  • Falk‐Mahapatra R, Gollnick SO. Photodynamic therapy and immunity: an update. Photochem Photobiol. 2020;96(3):550–559. doi:10.1111/php.13253.
  • Abdel-Hady ES, Martin-Hirsch P, Duggan-Keen M, Stern PL, Moore JV, Corbitt G, Kitchener HC, Hampson IN. Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy. Cancer Res. 2001;61(1):192–196. http://www.ncbi.nlm.nih.gov/pubmed/11196160
  • Adamek M, Kawczyk-Krupka A, Mostowy A, Czuba Z, Krol W, Kasperczyk S, Jakobisiak M, Golab J, Sieron A. Topical ALA–PDT modifies neutrophils’ chemiluminescence, lymphocytes’ interleukin-1beta secretion and serum level of transforming growth factor beta1 in patients with nonmelanoma skin malignancies. Photodiagnosis Photodyn Ther. 2005;2(1):65–72. doi:10.1016/S1572-1000(05)00004-9.
  • Prignano F, Lotti T, Spallanzani A, Berti S, de Giorgi V, Moretti S. Sequential effects of photodynamic treatment of basal cell carcinoma. J Cutan Pathol. 2009;36(4):409–416. doi:10.1111/j.1600-0560.2008.01063.x.
  • Kabingu E, Oseroff AR, Wilding GE, Gollnick SO. Enhanced systemic immune reactivity to a basal cell carcinoma associated antigen following photodynamic therapy. Clin Cancer Res. 2009;15(13):4460–4466. doi:10.1158/1078-0432.CCR-09-0400.
  • Longo C, Casari A, Pepe P, Moscarella E, Zalaudek I, Argenziano G, Pellacani G. Confocal microscopy insights into the treatment and cellular immune response of basal cell carcinoma to photodynamic therapy. Dermatology. 2012;225(3):264–270. doi:10.1159/000345106.
  • Evangelou G, Farrar MD, Cotterell L, Andrew S, Tosca AD, Watson REB, Rhodes LE. Topical photodynamic therapy significantly reduces epidermal Langerhans cells during clinical treatment of basal cell carcinoma. Br J Dermatol. 2012;166(5):1112–1115. doi:10.1111/j.1365-2133.2012.10823.x.
  • Pellegrini C, Orlandi A, Costanza G, Di Stefani A, Piccioni A, Di Cesare A, Chiricozzi A, Ferlosio A, Peris K, Fargnoli MC, et al. Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments. Shiku H, ed. PLoS One. 2017;12(8):e0183415. doi:10.1371/journal.pone.0183415.
  • Reginato E, Lindenmann J, Langner C, Schweintzger N, Bambach I, Smolle-Jüttner F, Wolf P. Photodynamic therapy downregulates the function of regulatory T cells in patients with esophageal squamous cell carcinoma. Photochem Photobiol Sci. 2014;13(9):1281–1289. doi:10.1039/c4pp00186a.
  • Theodoraki MN, Lorenz K, Lotfi R, Fürst D, Tsamadou C, Jaekle S, Mytilineos J, Brunner C, Theodorakis J, Hoffmann TK, et al. Influence of photodynamic therapy on peripheral immune cell populations and cytokine concentrations in head and neck cancer. Photodiagnosis Photodyn Ther. 2017;19:194–201. doi:10.1016/j.pdpdt.2017.05.015.
  • Gu B, Wang B, Li X, Feng Z, Ma C, Gao L, Yu Y, Zhang J, Zheng P, Wang Y, et al. Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment. Front Immunol. 2022;13:13. doi:10.3389/fimmu.2022.1050421.
  • Thong PSP, Ong K-W, Goh NSG, Kho K-W, Manivasager V, Bhuvaneswari R, Olivo M, Soo K-C. Photodynamic-therapy-activated immune response against distant untreated tumours in recurrent angiosarcoma. Lancet Oncol. 2007;8(10):950–952. doi:10.1016/S1470-2045(07)70318-2.
  • Thong PSP, Olivo M, Kho K-W, Bhuvaneswari R, Chin WWL, Ong K-W, Soo K-C. Immune response against angiosarcoma following lower fluence rate clinical photodynamic therapy. J Environ Pathol Toxicol Oncol. 2008;27(1):35–42. doi:10.1615/JEnvironPatholToxicolOncol.v27.i1.40.
  • Cuenca RE, Allison RR, Sibata C, Downie GH. Breast cancer with chest wall progression: treatment with photodynamic therapy. Ann Surg Oncol. 2004;11(3):322–327. doi:10.1245/ASO.2004.03.025.
  • Morrison SA, Hill SL, Rogers GS, Graham RA. Efficacy and safety of continuous low-irradiance photodynamic therapy in the treatment of chest wall progression of breast cancer. J Surg Res. 2014;192(2):235–241. doi:10.1016/j.jss.2014.06.030.
  • Eymerit-Morin C, Zidane M, Lebdai S, Triau S, Azzouzi AR, Rousselet M-C. Histopathology of prostate tissue after vascular-targeted photodynamic therapy for localized prostate cancer. Virchows Arch. 2013;463(4):547–552. doi:10.1007/s00428-013-1454-9.
  • Azzouzi A-R, Lebdai S, Benzaghou F, Stief C. Vascular-targeted photodynamic therapy with TOOKAD® Soluble in localized prostate cancer: standardization of the procedure. World J Urol. 2015;33(7):937–944. doi:10.1007/s00345-015-1535-2.
  • Kawczyk-Krupka A, Wawrzyniec K, Musiol SK, Potempa M, Bugaj AM, Sieroń A. Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy—A review. Photodiagnosis Photodyn Ther. 2015;12(4):567–574. doi:10.1016/j.pdpdt.2015.10.001.
  • Betrouni N, Boukris S, Benzaghou F. Vascular targeted photodynamic therapy with TOOKAD® Soluble (WST11) in localized prostate cancer: efficiency of automatic pre-treatment planning. Lasers Med Sci. 2017;32(6):1301–1307. doi:10.1007/s10103-017-2241-7.
  • Kleinclauss F, Frontczak A, Balssa L, Lebdai S, Azzouzi R. Photothérapie dynamique dans le cancer de la prostate à faible risque. Revue de la littérature Progrès en Urol. 2019;29(8–9):393–401. doi:10.1016/j.purol.2019.05.004.
  • Agency EM. Tookad: withdrawal of the application to change the marketing authorisation. Accessed 2023 April, 2. https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/tookad
  • Arnaut LG, Pereira MM, Dąbrowski JM, Silva EFF, Schaberle FA, Abreu AR, Rocha LB, Barsan MM, Urbańska K, Stochel G, et al. Photodynamic therapy efficacy enhanced by dynamics: the role of charge transfer and photostability in the selection of photosensitizers. Chem - A Eur J. 2014;20(18):5346–5357. doi:10.1002/chem.201304202.
  • Santos LL, Oliveira J, Monteiro E, Santos J, Sarmento C. Treatment of head and neck cancer with photodynamic therapy with redaporfin: a clinical case report. Case Rep Oncol. 2018;11(3):769–776. doi:10.1159/000493423.
  • Saavedra R, Rocha LB, Dąbrowski JM, Arnaut LG. Modulation of biodistribution, pharmacokinetics, and photosensitivity with the delivery vehicle of a bacteriochlorin photosensitizer for photodynamic therapy. ChemMedchem. 2014;9(2):390–398. doi:10.1002/cmdc.201300449.
  • Pucelik B, Arnaut LG, Stochel G, Dąbrowski JM. Design of pluronic-based formulation for enhanced redaporfin-photodynamic therapy against pigmented melanoma. ACS Appl Mater Interfaces. 2016;8(34):22039–22055. doi:10.1021/acsami.6b07031.
  • EMA. Orphan designation for the treatment of biliary tract cancer. Accessed 2023 April 2. https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu-3-22-2602
  • Valdés PA, Jacobs V, Harris BT, Wilson BC, Leblond F, Paulsen KD, Roberts DW. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J Neurosurg. 2015;123(3):771–780. doi:10.3171/2014.12.JNS14391.
  • Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):3801. doi:10.1038/s41467-020-17670-y.
  • Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. 2022;19(4):254–267. doi:10.1038/s41571-022-00600-w.
  • Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol Mech Dis. 2021;16(1):223–249. doi:10.1146/annurev-pathol-042020-042741.
  • Anand S, Chan T, Hasan T, Maytin E. Current prospects for treatment of solid tumors via photodynamic, photothermal, or ionizing radiation therapies combined with immune checkpoint inhibition (A review). Pharmaceuticals. 2021;14(5):447. doi:10.3390/ph14050447.
  • Zhang R, Zhu Z, Lv H, Li F, Sun S, Li J, Lee C-S. Immune checkpoint blockade mediated by a small‐molecule nanoinhibitor targeting the PD‐1/PD‐L1 pathway synergizes with photodynamic therapy to elicit antitumor immunity and antimetastatic effects on breast cancer. Small. 2019;15(49):1903881. doi:10.1002/smll.201903881.
  • Lobo CS, Mendes MIP, Gomes-da-Silva LC, Arnaut L.G, Pereira D.A. 2022. Photodynamic therapy changes tumour immunogenicity and promotes immune-checkpoint blockade response, especially when combined with enhanced tumour infiltration by micromechanical priming. Preprint. Published online 2022. doi:10.21203/rs.3.rs-2201462/v1.
  • Bao R, Wang Y, Lai J, Zhu H, Zhao Y, Li S, Li N, Huang J, Yang Z, Wang F, et al. Enhancing anti-PD-1/PD-L1 immune checkpoint inhibitory cancer therapy by CD276-targeted photodynamic ablation of tumor cells and tumor vasculature. Mol Pharm. 2019;16(1):339–348. doi:10.1021/acs.molpharmaceut.8b00997.
  • Wang X, Maswikiti EP, Zhu J-Y, Ma Y-L, Zheng P, Yu Y, Wang B-F, Gao L, Chen H. Photodynamic therapy combined with immunotherapy for an advanced esophageal cancer with an obstruction post metal stent implantation: a case report and literature review. Photodiagnosis Photodyn Ther. 2022;37:102671. doi:10.1016/j.pdpdt.2021.102671.
  • Ma C, Ma H, Deng X, Yu R, Song K-W, Wei K-K, Wang C-J, Li H-X, Chen H. Photodynamic therapy in combination with chemotherapy, targeted, and immunotherapy as a successful therapeutic approach for advanced gastric adenocarcinoma: a case report and literature review. Photobiomodulation, Photomed, Laser Surg. 2022;40(5):308–314. doi:10.1089/photob.2021.0167.
  • Schaberle FA, Gomes-da-Silva LC. A network representation of photodynamic therapy aiming the integration of knowledge and boosting clinical acceptance. Photodiagnosis Photodyn Ther. 2022;37:102715. doi:10.1016/j.pdpdt.2022.102715.
  • Nath S, Obaid G, Hasan T. The course of immune stimulation by photodynamic therapy: bridging fundamentals of photochemically induced immunogenic cell death to the enrichment of T‐cell repertoire. Photochem Photobiol. 2019;95(6):1288–1305. doi:10.1111/php.13173.
  • Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019;2(5):e192535. doi:10.1001/jamanetworkopen.2019.2535.