1,079
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Spatial heterogeneity of T cell repertoire across NSCLC tumors, tumor edges, adjacent and distant lung tissues

, , , , , , , , , , , , , , , , ORCID Icon & show all
Article: 2233399 | Received 03 Nov 2022, Accepted 02 Jul 2023, Published online: 20 Oct 2023

References

  • Al-Shahrabani F, Vallbohmer D, Angenendt SKnoefel WT. Surgical strategies in the therapy of non-small cell lung cancer. World J Clin Oncol. 2014;5(4):595–9. doi:10.5306/wjco.v5.i4.595.
  • American Cancer Society. (2022). Cancer facts & figures 2022. from https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html.
  • Siegel R L, Miller K D, Fuchs H, EJemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi:10.3322/caac.21654.
  • Gadgeel SM, Ramalingam S, SKalemkerian GP. Treatment of lung cancer. Radiologic Clinics Of North America. 2012;50(5):961–974. doi:10.1016/j.rcl.2012.06.003.
  • Reuben A, Gittelman R, Gao J, Zhang J, Yusko EC, Wu C-J, Emerson R, Zhang J, Tipton C, Li J. TCR Repertoire Intratumor Heterogeneity in Localized Lung Adenocarcinomas: An Association with Predicted Neoantigen Heterogeneity and Postsurgical Recurrence. Cancer Discov. 2017;7(10):1088–1097. doi:10.1158/2159-8290.CD-17-0256.
  • Creelan BC, Wang C, Teer JK, Toloza EM, Yao J, Kim S, Landin AM, Mullinax JE, Saller JJ, Saltos AN. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat Med. 2021;27(8):1410–1418. doi:10.1038/s41591-021-01462-y.
  • Jiang Z, Zhou YHuang Y, Huang J. A combination of biomarkers predict response to immune checkpoint blockade therapy in non-small cell lung cancer. Front Immunol. 2021;12:813331. doi:10.3389/fimmu.2021.813331.
  • Lauss M, Donia M, Harbst K, Andersen R, Mitra S, Rosengren F, Salim M, Vallon-Christersson J, Törngren T, Kvist A. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat Commun. 2017;8(1):1738. doi:10.1038/s41467-017-01460-0.
  • Jardim DL, Goodman A, de Melo Gagliato DKurzrock D, Kurzrock R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell. 2021;39(2):154–173. doi:10.1016/j.ccell.2020.10.001.
  • Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N. Molecular determinants of response to anti–programmed cell death (PD)-1 and aNTI–PROGRAMMED DEATH-LIGANd 1 (PD-L1) blockade in patients with non–small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–641. doi:10.1200/JCO.2017.75.3384.
  • Buttner R, Longshore JW, Lopez-Rios F, Merkelbach-Bruse S, Normanno N, Rouleau E, Penault-Llorca F. Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open. 2019;4(1):e000442. doi:10.1136/esmoopen-2018-000442.
  • High TMB predicts immunotherapy benefit. Cancer Discov. 2018;8(6):668. doi:10.1158/2159-8290.CD-NB2018-048.
  • Kim SH, Go SI, Song DH, Park SW, Kim HR, Jang I, Kim JD, Lee JS, Lee G-W. Prognostic impact of CD8 and programmed death-ligand 1 expression in patients with resectable non-small cell lung cancer. Br J Cancer. 2019;120(5):547–554. doi:10.1038/s41416-019-0398-5.
  • Feldmeyer L, W HC, Ray-Lyons G, Nagarajan P, Density APP, Curry JL, Torres-Cabala CA, Mino B, Rodriguez-Canales J, Reuben A. Distribution, and composition of immune infiltrates correlate with survival in Merkel cell carcinoma. Clin Cancer Res. 2016;22(22):5553–5563. doi:10.1158/1078-0432.CCR-16-0392.
  • Reuben A, Zhang J, Chiou SH, Gittelman RM, Li J, Lee W-C, Fujimoto J, Behrens C, Liu X, Wang F. Comprehensive T cell repertoire characterization of non-small cell lung cancer. Nat Commun. 2020;11(1):603. doi:10.1038/s41467-019-14273-0.
  • Tian P, Zeng H, Ji L, Ding Z, Ren L, Gao W, Fan Z, Li L, Le X, Li P. Lung adenocarcinoma with ERBB2 exon 20 insertions: Comutations and immunogenomic features related to chemoimmunotherapy. Lung Cancer. 2021;160:50–58. doi:10.1016/j.lungcan.2021.07.014.
  • Han J, Yu R, Duan J, Li J, Zhao W, Feng G, Bai H, Wang Y, Zhang X, Wan R. Weighting tumor-specific TCR repertoires as a classifier to stratify the immunotherapy delivery in non–small cell lung cancers. Sci Adv. 2021;7(21). doi:10.1126/sciadv.abd6971.
  • Huang H, Wang C, Rubelt F, Scriba T, JDavis M M. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol. 2020;38(10):1194–1202. doi:10.1038/s41587-020-0505-4.
  • Jiang Y, Li YZhu B, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Disease. 2015;6(6):e1792. doi:10.1038/cddis.2015.162.
  • Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557(7706):575–579. doi:10.1038/s41586-018-0130-2.
  • Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MAJ, Hirt C, Mezzadra R, Slagter M, Dijkstra K. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25(1):89–94. doi:10.1038/s41591-018-0266-5.
  • Sharma PAllison JP, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. doi:10.1126/science.aaa8172.
  • Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017;2(2):e000213. doi:10.1136/esmoopen-2017-000213.
  • Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guérin M, Biton J, Ouakrim H. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti–PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115(17):E4041–e4050. doi:10.1073/pnas.1720948115.
  • Spranger S. Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol. 2016;28(8):383–391. doi:10.1093/intimm/dxw014.
  • Liu B, Hu X, Feng K, Gao R, Xue Z, Zhang S, Zhang Y, Corse E, Hu Y, Han W. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat Cancer. 2022;3(1):108–121. doi:10.1038/s43018-021-00292-8.
  • Wang C, Yin R, Dai J, Gu Y, Cui S, Ma H, Zhang Z, Huang J, Qin N, Jiang T. Whole-genome sequencing reveals genomic signatures associated with the inflammatory microenvironments in Chinese NSCLC patients. Nat Commun. 2018;9(1):2054. doi:10.1038/s41467-018-04492-2.
  • Hu X, Fujimoto J, Ying L, Fukuoka J, Ashizawa K, Sun W, Reuben A, Chow C-W, McGranahan N, Chen R. Multi-region exome sequencing reveals genomic evolution from preneoplasia to lung adenocarcinoma. Nat Commun. 2019;10(1):2978. doi:10.1038/s41467-019-10877-8.
  • Jiang T, Shi J, Dong Z, Hou L, Zhao C, Li X, Mao B, Zhu W, Guo X, Zhang H. Genomic landscape and its correlations with tumor mutational burden, PD-L1 expression, and immune cells infiltration in Chinese lung squamous cell carcinoma. J Hematol Oncol. 2019;12(1):75. doi:10.1186/s13045-019-0762-1.
  • Chen J, Yang H, Teo ASM, Amer LB, Sherbaf FG, Tan CQ, Alvarez JJS, Lu B, Lim JQ, Takano A. Genomic landscape of lung adenocarcinoma in East Asians. Nat Genet. 2020;52(2):177–186. doi:10.1038/s41588-019-0569-6.