1,378
Views
0
CrossRef citations to date
0
Altmetric
Original Research

The yes-associated protein (YAP) is associated with resistance to anti-GD2 immunotherapy in neuroblastoma through downregulation of ST8SIA1

, , , , &
Article: 2240678 | Received 02 Apr 2023, Accepted 21 Jul 2023, Published online: 05 Aug 2023

References

  • Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA. Neuroblastoma. Nat Rev Dis Primers. 2016 Nov 10;2(1):16078. doi:10.1038/nrdp.2016.78.
  • London WB, Bagatell R, Weigel BJ, et al. Historical time to disease progression and progression-free survival in patients with recurrent/refractory neuroblastoma treated in the modern era on children’s oncology group early-phase trials. Cancer. 2017 Dec 15;123(24):4914–11. doi:10.1002/cncr.30934.
  • Mody R, Yu AL, Naranjo A, Zhang FF, London WB, Shulkin BL, Parisi MT, Servaes SEN, Diccianni MB, Hank JA, et al. Irinotecan, temozolomide, and dinutuximab with GM-CSF in children with refractory or relapsed neuroblastoma: a report from the children’s oncology group. J Clin Oncol. 2020 01 07;38(19):2160–2169. doi:10.1200/JCO.20.00203.
  • Lerman BJ, Li Y, Carlowicz C, Granger M, Cash T, Sadanand A, Somers K, Ranavaya A, Weiss BD, Choe M, et al. Progression-free survival and patterns of response in patients with relapsed high-risk neuroblastoma treated with irinotecan/temozolomide/dinutuximab/granulocyte-macrophage colony-stimulating factor. J Clin Oncol. 2023 Jan 20;41(3):508–516. doi:10.1200/JCO.22.01273.
  • Chen L, Humphreys A, Turnbull L, Bellini A, Schleiermacher G, Salwen H, Cohn SL, Bown N, Tweddle DA. Identification of different ALK mutations in a pair of neuroblastoma cell lines established at diagnosis and relapse. Oncotarget. 2016 Dec 27;7(52):87301–87311. doi:10.18632/oncotarget.13541.
  • Eleveld TF, Oldridge DA, Bernard V, Koster J, Daage LC, Diskin SJ, Schild L, Bentahar NB, Bellini A, Chicard M, et al. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet. 2015 08;47(8):864–871. doi:10.1038/ng.3333.
  • Padovan-Merhar OM, Raman P, Ostrovnaya I, Kalletla K, Rubnitz KR, Sanford EM, Ali SM, Miller VA, Mossé YP, Granger MP, et al. Enrichment of targetable mutations in the relapsed neuroblastoma genome. PLoS Genet. 2016 Dec;12(12):e1006501. doi:10.1371/journal.pgen.1006501.
  • Schulte M, Köster J, Rahmann S, Schramm A. Cancer evolution, mutations, and clonal selection in relapse neuroblastoma. Cell Tissue Res. 2018 May;372(2):263–268. doi:10.1007/s00441-018-2810-5.
  • Schleiermacher G, Javanmardi N, Bernard V, Leroy Q, Cappo J, Rio Frio T, Pierron G, Lapouble E, Combaret V, Speleman F, et al. Emergence of new ALK mutations at relapse of neuroblastoma. J Clin Oncol. 2014 Sep 1;32(25):2727–2734. doi:10.1200/JCO.2013.54.0674.
  • Schramm A, Köster J, Assenov Y, Althoff K, Peifer M, Mahlow E, Odersky A, Beisser D, Ernst C, Henssen AG, et al. Mutational dynamics between primary and relapse neuroblastomas. Nat Genet. 2015 Aug;47(8):872–877. doi:10.1038/ng.3349.
  • Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 2001 May 15;15(10):1229–1241. doi:10.1101/gad.888601.
  • Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. Embo J. 1999 May 4;18(9):2551–2562. doi:10.1093/emboj/18.9.2551.
  • Kim M, Kim T, Johnson RL, Lim DS. Transcriptional co-repressor function of the hippo pathway transducers YAP and TAZ. Cell Rep. 2015 Apr 14;11(2):270–282. doi:10.1016/j.celrep.2015.03.015.
  • Ahmed AA, Mohamed AD, Gener M, Li W, Taboada E. YAP and the hippo pathway in pediatric cancer. Mol Cell Oncol. 2017;4(3):e1295127. doi:10.1080/23723556.2017.1295127.
  • Boeva V, Louis-Brennetot C, Peltier A, Durand S, Pierre-Eugène C, Raynal V, Etchevers HC, Thomas S, Lermine A, Daudigeos-Dubus E, et al. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat Genet. 2017 Sep;49(9):1408–1413. doi:10.1038/ng.3921.
  • Shim J, Lee JY, Jonus HC, Arnold A, Schnepp RW, Janssen KM, Maximov V, Goldsmith KC. YAP-mediated repression of HRK regulates tumor growth, therapy response, and survival under tumor environmental stress in neuroblastoma. Cancer Res. 2020 11;80(21):4741–4753. doi:10.1158/0008-5472.CAN-20-0025.
  • Coggins GE, Farrel A, Rathi KS, Hayes CM, Scolaro L, Rokita JL, Maris JM. YAP1 mediates resistance to MEK1/2 inhibition in neuroblastomas with hyperactivated RAS signaling. Cancer Res. 2019 12-15;79(24):6204–6214. doi:10.1158/0008-5472.CAN-19-1415.
  • Wu ZL, Schwartz E, Seeger R, Ladisch S. Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res. 1986 Jan;46(1):440–443.
  • Ladisch S, Wu ZL. Detection of a tumour-associated ganglioside in plasma of patients with neuroblastoma. Lancet. 1985 Jan 19;1(8421):136–138. doi:10.1016/s0140-6736(85)91906-3.
  • Sariola H, Harri T, Rapola J, Saarinen UM. Cell-surface ganglioside GD2 in the immunohistochemical detection and differential diagnosis of neuroblastoma. Am J Clin Pathol. 1991 Aug;96(2):248–252. doi:10.1093/ajcp/96.2.248.
  • Mujoo K, Cheresh DA, Yang HM, Reisfeld RA. Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer Res. 1987 Feb 15;47(4):1098–1104.
  • Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010 Sep 30;363(14):1324–1334. doi:10.1056/NEJMoa0911123.
  • Yu AL, Gilman AL, Ozkaynak MF, Naranjo A, Diccianni MB, Gan J, Hank JA, Batova A, London WB, Tenney SC, et al. Long-term follow-up of a phase III study of ch14.18 (dinutuximab) + cytokine immunotherapy in children with high-risk neuroblastoma: COG study ANBL0032. Clin Cancer Res. 2021 04 15;27(8):2179–2189. doi:10.1158/1078-0432.CCR-20-3909.
  • Kushner BH, Cheung IY, Modak S, Basu EM, Roberts SS, Cheung NK. Humanized 3F8 Anti-GD2 monoclonal antibody dosing with granulocyte-macrophage colony-stimulating factor in patients with resistant neuroblastoma: a phase 1 clinical trial. JAMA Oncol. 2018 Dec 01;4(12):1729–1735. doi:10.1001/jamaoncol.2018.4005.
  • Blom T, Lurvink R, Aleven L, Mensink M, Wolfs T, Dierselhuis M, van Eijkelenburg N, Kraal K, van Noesel M, van Grotel M, et al. Treatment-related toxicities during anti-GD2 immunotherapy in high-risk neuroblastoma patients. Front Oncol. 2020;10:601076. doi:10.3389/fonc.2020.601076.
  • Ozkaynak MF, Gilman AL, London WB, Naranjo A, Diccianni MB, Tenney SC, Smith M, Messer KS, Seeger R, Reynolds CP, et al. A Comprehensive safety trial of chimeric antibody 14.18 with GM-CSF, IL-2, and isotretinoin in high-risk neuroblastoma patients following myeloablative therapy: children’s oncology group study ANBL0931. Front Immunol. 2018;9:1355. doi:10.3389/fimmu.2018.01355.
  • Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018 Oct;8(10):1219–1226. doi:10.1158/2159-8290.CD-18-0442.
  • Terzic T, Cordeau M, Herblot S, Teira P, Cournoyer S, Beaunoyer M, Peuchmaur M, Duval M, Sartelet H. Expression of disialoganglioside (GD2) in neuroblastic tumors: a prognostic value for patients treated with anti-GD2 immunotherapy. Pediatr Dev Pathol. 2018;21(4):355–362. doi:10.1177/1093526617723972.
  • Schumacher-Kuckelkorn R, Volland R, Gradehandt A, Hero B, Simon T, Berthold F. Lack of immunocytological GD2 expression on neuroblastoma cells in bone marrow at diagnosis, during treatment, and at recurrence. Pediatr Blood Cancer. 2017 Jan;64(1):46–56. doi:10.1002/pbc.26184.
  • Schumacher-Kuckelkorn R, Hero B, Ernestus K, Berthold F. Lacking immunocytological GD2 expression in neuroblastoma: report of 3 cases. Pediatr Blood Cancer. 2005 Aug;45(2):195–201. doi:10.1002/pbc.20301.
  • Mabe NW, Huang M, Dalton GN, Alexe G, Schaefer DA, Geraghty AC, Robichaud AL, Conway AS, Khalid D, Mader MM, et al. Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nat Cancer. 2022 Jul 11;3(8):976–993. doi:10.1038/s43018-022-00405-x.
  • Jonus HC, Burnham RE, Ho A, Pilgrim AA, Shim J, Doering CB, Spencer HT, Goldsmith KC. Dissecting the cellular components of ex vivo γδ T cell expansions to optimize selection of potent cell therapy donors for neuroblastoma immunotherapy trials. Oncoimmunol. 2022;11(1):2057012. doi:10.1080/2162402X.2022.2057012.
  • Zoine JT, Knight KA, Fleischer LC, Sutton KS, Goldsmith KC, Doering CB, Spencer HT. Ex vivo expanded patient-derived γδ T-cell immunotherapy enhances neuroblastoma tumor regression in a murine model. Oncoimmunol. 2019;8(8):1593804. doi:10.1080/2162402X.2019.1593804.
  • Mensurado S, Blanco-Domínguez R, Silva-Santos B. The emerging roles of γδ T cells in cancer immunotherapy. Nat Rev Clin Oncol. 2023 Jan 09. doi:10.1038/s41571-022-00722-1.
  • Alter G, Malenfant JM, Altfeld M. Cd107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004 Nov;294(1–2):15–22. doi:10.1016/j.jim.2004.08.008.
  • Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, Lee PP. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med. 2003 Nov;9(11):1377–1382. doi:10.1038/nm942.
  • Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. Jf Immunol Meth. 2003 Oct 01;281(1–2):65–78. doi:10.1016/s0022-1759(03)00265-5.
  • Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol. 2013 Feb;13(2):88–100. doi:10.1038/nri3384.
  • Silva-Santos B, Mensurado S, Coffelt SB. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer. 2019 07;19(7):392–404. doi:10.1038/s41568-019-0153-5.
  • Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, Craft J, Yin Z. γδ T cells provide an early source of interferon γ in tumor immunity. J Experiment Med. 2003 Aug 04;198(3):433–442. doi:10.1084/jem.20030584.
  • Zhang R, Banik NL, Ray SK. Combination of all-trans retinoic acid and interferon-gamma suppressed PI3K/Akt survival pathway in glioblastoma T98G cells whereas NF-kappaB survival signaling in glioblastoma U87MG cells for induction of apoptosis. Neurochem Res. 2007 Dec;32(12):2194–2202. doi:10.1007/s11064-007-9417-7.
  • George RE, Sanda T, Hanna M, Fröhling S, Ii WL, Zhang J, Ahn Y, Zhou W, London WB, McGrady P, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature. 2008 Oct 16;455(7215):975–978. doi:10.1038/nature07397.
  • Gilman AL, Ozkaynak MF, Matthay KK, Krailo M, Yu AL, Gan J, Sternberg A, Hank JA, Seeger R, Reaman GH, et al. Phase I study of ch14.18 with granulocyte-macrophage colony-stimulating factor and interleukin-2 in children with neuroblastoma after autologous bone marrow transplantation or stem-cell rescue: a report from the children’s oncology group. J Clin Oncol. 2009 Jan 1;27(1):85–91. doi:10.1200/JCO.2006.10.3564.
  • van Groningen T, Koster J, Valentijn LJ, Zwijnenburg DA, Akogul N, Hasselt NE, Broekmans M, Haneveld F, Nowakowska NE, Bras J, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017 Aug;49(8):1261–1266. doi:10.1038/ng.3899.
  • Stokes ME, Small JC, Vasciaveo A, Shimada K, Hirschhorn T, Califano A, Stockwell BR. Mesenchymal subtype neuroblastomas are addicted to TGF-βR2/HMGCR-driven protein geranylgeranylation. Sci Rep. 2020 Jul 01;10(1):10748. doi:10.1038/s41598-020-67310-0.
  • Stampouloglou E, Cheng N, Federico A, Slaby E, Monti S, Szeto GL, Varelas X. Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biol. 2020 Jan;18(1):e3000591. doi:10.1371/journal.pbio.3000591.
  • Fan Y, Gao Y, Rao J, Wang K, Zhang F, Zhang C. YAP-1 promotes tregs differentiation in hepatocellular carcinoma by enhancing TGFBR2 transcription. Cell Physiol Biochem. 2017;41(3):1189–1198. doi:10.1159/000464380.
  • van den Bijgaart RJE, Kroesen M, Brok IC, Reijnen D, Wassink M, Boon L, Hoogerbrugge PM, Adema GJ. Anti-GD2 antibody and vorinostat immunocombination therapy is highly effective in an aggressive orthotopic neuroblastoma model. Oncoimmunol. 2020 09-20;9(1):1817653. doi:10.1080/2162402X.2020.1817653.
  • Dondero A, Morini M, Cangelosi D, Mazzocco K, Serra M, Spaggiari GM, Rotta G, Tondo A, Locatelli F, Castellano A, et al. Multiparametric flow cytometry highlights B7-H3 as a novel diagnostic/therapeutic target in GD2neg/low neuroblastoma variants. J Immunother Cancer. 2021 04;9(4):e002293. doi:10.1136/jitc-2020-002293.
  • Moghimi B, Muthugounder S, Jambon S, Tibbetts R, Hung L, Bassiri H, Hogarty MD, Barrett DM, Shimada H, Asgharzadeh S, et al. Preclinical assessment of the efficacy and specificity of GD2-B7H3 SynNotch CAR-T in metastatic neuroblastoma. Nat Commun. 2021 Jan 21;12(1):511. doi:10.1038/s41467-020-20785-x.
  • Bosse KR, Raman P, Zhu Z, Lane M, Martinez D, Heitzeneder S, Rathi KS, Kendsersky NM, Randall M, Donovan L, et al. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell. 2017 Sep 11;32(3):295–309.e12. doi:10.1016/j.ccell.2017.08.003.
  • Tang TT, Konradi AW, Feng Y, Peng X, Ma M, Li J, Yu F-X, Guan KL, Post L. Small molecule inhibitors of TEAD auto-palmitoylation selectively inhibit proliferation and tumor growth of NF2-deficient mesothelioma. Mol Cancer Ther. 2021 Jun;20(6):986–998. doi:10.1158/1535-7163.MCT-20-0717.
  • Del Bufalo F, De Angelis B, Caruana I, Del Baldo G, De Ioris MA, Serra A, Mastronuzzi A, Cefalo MG, Pagliara D, Amicucci M, et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N Engl J Med. 2023 Apr 6;388(14):1284–1295. doi:10.1056/NEJMoa2210859.