1,909
Views
1
CrossRef citations to date
0
Altmetric
Review

Non-pharmaceutical interventions to optimize cancer immunotherapy

ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Article: 2255459 | Received 31 May 2023, Accepted 31 Aug 2023, Published online: 28 Sep 2023

References

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–15. doi:10.1056/NEJMoa1003466.
  • Boesch M, Baty F, Rothschild SI, Tamm M, Joerger M, Fruh M, Brutsche MH. Tumour neoantigen mimicry by microbial species in cancer immunotherapy. Br J Cancer. 2021;125(3): 313–323. doi:10.1038/s41416-021-01365-2.
  • Boesch M, Horvath L, Baty F, Pircher A, Wolf D, Spahn S, Straussman R, Tilg H, Brutsche MH. Compartmentalization of the host microbiome: how tumor microbiota shapes checkpoint immunotherapy outcome and offers therapeutic prospects. J Immunother Cancer. 2022;10(11):e005401. doi:10.1136/jitc-2022-005401.
  • Boesch M, Baty F, Kowatsch T, Wolf D, Fruh M, Brutsche MH. Call for a holistic framework for cancer immunotherapy. Cancer. 2022;128(21):3772–3774. doi:10.1002/cncr.34467.
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi:10.1371/journal.pbio.1002533.
  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Sci. 2011;334(6052):105–108. doi:10.1126/science.1208344.
  • Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Sci. 2011;332(6032):970–974.
  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi:10.1038/nature12820.
  • Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol. 2022;21(4):236–247. doi:10.1038/s41579-022-00805-x.
  • Zeng X, Xing X, Gupta M, Keber FC, Lopez JG, Lee YJ, Roichman A, Wang L, Neinast MD, Donia MS, et al. Gut bacterial nutrient preferences quantified in vivo. Cell. 2022;185(18):3441–56 e19.
  • Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, Degivry M-C, Quéré G, Garault P, van Hylckama Vlieg JET, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 2016;10(9):2235–2245. doi:10.1038/ismej.2016.13.
  • Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, et al. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021;184(16):4137–53 e14.
  • Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018;29(6):1437–1444. doi:10.1093/annonc/mdy103.
  • Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Sci. 2021;371(6529):602–609. doi:10.1126/science.abb5920.
  • Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CPM, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Sci. 2015;350(6264):1079–1084. doi:10.1126/science.aad1329.
  • Boesch M, Baty F, Albrich WC, Flatz L, Rodriguez R, Rothschild SI, et al. Local tumor microbial signatures and response to checkpoint blockade in non-small cell lung cancer. Oncoimmunology. 2021;10(1):1988403.
  • Malczewski AB, Navarro S, Coward JI, Ketheesan N. Microbiome-derived metabolome as a potential predictor of response to cancer immunotherapy. J Immunother Cancer. 2020;8(2):e001383. doi:10.1136/jitc-2020-001383.
  • Matson V, Gajewski TF. Dietary modulation of the gut microbiome as an immunoregulatory intervention. Cancer Cell. 2022;40(3):246–248. doi:10.1016/j.ccell.2022.02.014.
  • Levesque S, Pol JG, Ferrere G, Galluzzi L, Zitvogel L, Kroemer G. Trial watch: dietary interventions for cancer therapy. Oncoimmunology. 2019;8(7):1591878. doi:10.1080/2162402X.2019.1591878.
  • Malczewski AB, Ketheesan N, Coward JIG, Navarro S. Enhancing checkpoint inhibitor therapy in solid tissue cancers: the role of diet, the microbiome & microbiome-derived metabolites. Front Immunol. 2021;12:624434. doi:10.3389/fimmu.2021.624434.
  • Rescigno M. Training the microbiota to increase immune checkpoint blockade and to reduce toxicity. Eur J Immunol. 2023;e2250183. doi:10.1002/eji.202250183.
  • Ringel AE, Drijvers JM, Baker GJ, Catozzi A, Garcia-Canaveras JC, Gassaway BM, Miller BC, Juneja VR, Nguyen TH, Joshi S, et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell. 2020;183(7):1848–66 e26.
  • Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, Ziegler PK, Varga J, Reindl W, Pommerenke C, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514(7523):508–512.
  • Kuehm LM, Khojandi N, Piening A, Klevorn LE, Geraud SC, McLaughlin NR, Griffett K, Burris TP, Pyles KD, Nelson AM, et al. Fructose promotes cytoprotection in melanoma tumors and resistance to immunotherapy. Cancer Immunol Res. 2021;9(2):227–238.
  • Vernieri C, Fuca G, Ligorio F, Huber V, Vingiani A, Iannelli F, Raimondi A, Rinchai D, Frigè G, Belfiore A, et al. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer. Cancer Discov. 2022;12(1):90–107. doi:10.1158/2159-8290.CD-21-0030.
  • Ligorio F, Fuca G, Provenzano L, Lobefaro R, Zanenga L, Vingiani A, Belfiore A, Lorenzoni A, Alessi A, Pruneri G, et al. Exceptional tumour responses to fasting-mimicking diet combined with standard anticancer therapies: a sub-analysis of the NCT03340935 trial. Eur J Cancer. 2022;172:300–310. doi:10.1016/j.ejca.2022.05.046.
  • Turbitt WJ, Demark-Wahnefried W, Peterson CM, Norian LA. Targeting glucose metabolism to enhance immunotherapy: emerging evidence on intermittent fasting and calorie restriction mimetics. Front Immunol. 2019;10:1402. doi:10.3389/fimmu.2019.01402.
  • Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754–762. doi:10.1038/nrc3829.
  • Argiles JM, Lopez-Soriano FJ, Stemmler B, Busquets S. Cancer-associated cachexia - understanding the tumour macroenvironment and microenvironment to improve management. Nat Rev Clin Oncol. 2023;20(4): 250–264. doi:10.1038/s41571-023-00734-5.
  • Yoo SK, Chowell D, Valero C, Morris LGT, Chan TA. Outcomes among patients with or without obesity and with cancer following treatment with immune checkpoint blockade. JAMA Netw Open. 2022;5(2):e220448. doi:10.1001/jamanetworkopen.2022.0448.
  • Buque A, Galluzzi L, Kroemer G. Ketosis versus carbotoxicity - metabolism determines the outcome of cancer immunotherapy. Mol Cell Oncol. 2021;8:1868266.
  • Ferrere G, Tidjani Alou M, Liu P, Goubet AG, Fidelle M, Kepp O, Durand S, Iebba V, Fluckiger A, Daillère R, et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight. 2021;6(2). doi:10.1172/jci.insight.145207.
  • Dai X, Bu X, Gao Y, Guo J, Hu J, Jiang C, Zhang Z, Xu K, Duan J, He S, et al. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol Cell. 2021;81(11):2317–31 e6.
  • Zitvogel L, Derosa L, Kroemer G. Modulation of cancer immunotherapy by dietary fibers and over-the-counter probiotics. Cell Metab. 2022;34(3):350–352. doi:10.1016/j.cmet.2022.02.004.
  • Spencer CN, McQuade JL, Gopalakrishnan V, McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG, Peterson CB, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Sci. 2021;374(6575):1632–1640. doi:10.1126/science.aaz7015.
  • Simpson RC, Shanahan ER, Batten M, Reijers ILM, Read M, Silva IP, Versluis JM, Ribeiro R, Angelatos AS, Tan J, et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat Med. 2022;28(11):2344–2352. doi:10.1038/s41591-022-01965-2.
  • Lam KC, Araya RE, Huang A, Chen Q, Di Modica M, Rodrigues RR, Lopès A, Johnson SB, Schwarz B, Bohrnsen E, et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell. 2021;184(21):5338–56 e21.
  • Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Sci. 2018;359(6371):97–103.
  • Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen Y, Zheng H, Yao C, Wang Y, Lu S. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J Thorac Oncol. 2019;14(8):1378–1389.
  • McTiernan A, Friedenreich CM, Katzmarzyk PT, Powell KE, Macko R, Buchner D, Pescatello LS, Bloodgood B, Tennant B, Vaux-Bjerke A, et al. Physical activity in cancer prevention and survival: a systematic review. Med Sci Sports Exerc. 2019;51(6):1252–1261.
  • Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Berrington de Gonzalez A, Hartge P, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816–825. doi:10.1001/jamainternmed.2016.1548.
  • Renman D, Gylling B, Vidman L, Boden S, Strigard K, Palmqvist R, Harlid S, Gunnarsson U, van Guelpen B. Density of CD3(+) and CD8(+) cells in the microenvironment of colorectal cancer according to prediagnostic physical activity. Cancer Epidemiol Biomarkers Prev. 2021;30(12):2317–2326.
  • Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571. doi:10.1038/nature13954.
  • Kurz E, Hirsch CA, Dalton T, Shadaloey SA, Khodadadi-Jamayran A, Miller G, Pareek S, Rajaei H, Mohindroo C, Baydogan S, et al. Exercise-induced engagement of the IL-15/IL-15Ralpha axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell. 2022;40(7): 720–737.e5. doi:10.1016/j.ccell.2022.05.006.
  • Conlon K, Watson DC, Waldmann TA, Valentin A, Bergamaschi C, Felber BK, Peer CJ, Figg WD, Potter EL, Roederer M, et al. Phase I study of single agent NIZ985, a recombinant heterodimeric IL-15 agonist, in adult patients with metastatic or unresectable solid tumors. J Immunother Cancer. 2021;9(11):e003388. doi:10.1136/jitc-2021-003388.
  • Martin-Ruiz A, Fiuza-Luces C, Rincon-Castanedo C, Fernandez-Moreno D, Galvez BG, Martinez-Martinez E, Martín-Acosta P, Coronado MJ, Franco-Luzón L, González-Murillo Á, et al. Benefits of exercise and immunotherapy in a murine model of human non-small-cell lung carcinoma. Exerc Immunol Rev. 2020;26:100–115.
  • Pedersen KS, Gatto F, Zerahn B, Nielsen J, Pedersen BK, Hojman P, Gehl J. Exercise-mediated lowering of glutamine availability suppresses tumor growth and attenuates muscle wasting. iScience. 2020;23(4):100978.
  • Bay ML, Unterrainer N, Stagaard R, Pedersen KS, Schauer T, Staffeldt MM, Christensen JF, Hojman P, Pedersen BK, Gehl J. Voluntary wheel running can lead to modulation of immune checkpoint molecule expression. Acta Oncol. 2020;59(12):1447–1454.
  • Gerritsen JK, Vincent AJ. Exercise improves quality of life in patients with cancer: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50(13):796–803. doi:10.1136/bjsports-2015-094787.
  • Groen WG, Naaktgeboren WR, van Harten WH, van Vulpen JK, Kool N, Sonke GS, van der Wall E, Velthuis MJ, Aaronson NK, May AM, et al. Physical Fitness and Chemotherapy Tolerance in patients with early-stage breast cancer. Med Sci Sports Exerc. 2022;54(4):537–542.
  • Hyatt A, Gough K, Murnane A, Au-Yeung G, Dawson T, Pearson E, Dhillon H, Sandhu S, Williams N, Paton E, et al. I-move, a personalised exercise intervention for patients with advanced melanoma receiving immunotherapy: a randomised feasibility trial protocol. BMJ Open. 2020;10(2):e036059. doi:10.1136/bmjopen-2019-036059.
  • Matzka M, Mayer H, Kock-Hodi S, Moses-Passini C, Dubey C, Jahn P, Schneeweiss S, Eicher M. Relationship between resilience, psychological distress and physical activity in cancer patients: a cross-sectional observation study. PloS One. 2016;11(4):e0154496.
  • Song H, Fall K, Fang F, Erlendsdottir H, Lu D, Mataix-Cols D, Fernández de la Cruz L, D’Onofrio BM, Lichtenstein P, Gottfreðsson M, et al. Stress related disorders and subsequent risk of life threatening infections: population based sibling controlled cohort study. BMJ. 2019;367:l5784. doi:10.1136/bmj.l5784.
  • Glaser R, Kiecolt-Glaser JK, Bonneau RH, Malarkey W, Kennedy S, Hughes J. Stress-induced modulation of the immune response to recombinant hepatitis B vaccine. Psychosom Med. 1992;54(1):22–29. doi:10.1097/00006842-199201000-00005.
  • Madison AA, Shrout MR, Renna ME, Kiecolt-Glaser JK. Psychological and behavioral predictors of vaccine efficacy: considerations for COVID-19. Perspect Psychol Sci. 2021;16(2):191–203. doi:10.1177/1745691621989243.
  • Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130(4):601–630. doi:10.1037/0033-2909.130.4.601.
  • Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006;6(10):715–727. doi:10.1038/nri1936.
  • Dunn GP, Old LJ, Schreiber RD. The three es of cancer immunoediting. Annu Rev Immunol. 2004;22(1):329–360. doi:10.1146/annurev.immunol.22.012703.104803.
  • Chen Y, Qian Y, Huang W, Zhang Y, Wu M, Cheng Y, Yang N, Liu Y. Chronic stress promotes tumor immune evasion via the suppression of MHC-I expression and the upregulation of PD-L1. Am J Cancer Res. 2022;12(11):5286–5299.
  • Dai S, Mo Y, Wang Y, Xiang B, Liao Q, Zhou M, Li X, Li Y, Xiong W, Li G, et al. Chronic stress promotes cancer development. Front Oncol. 2020;10:1492. doi:10.3389/fonc.2020.01492.
  • Andersen BL, McElroy JP, Carbone DP, Presley CJ, Smith RM, Shields PG, Brock GN. Psychological symptom trajectories and non-small cell lung cancer survival: a joint model analysis. Psychosom Med. 2022;84(2):215–223.
  • Spiegel D. Mind matters in cancer survival. Psychooncology. 2012;21:588–593.
  • Perego M, Tyurin VA, Tyurina YY, Yellets J, Nacarelli T, Lin C, Nefedova Y, Kossenkov A, Liu Q, Sreedhar S, et al. Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Sci Transl Med. 2020;12(572). doi:10.1126/scitranslmed.abb5817.
  • Giese-Davis J, Collie K, Rancourt KM, Neri E, Kraemer HC, Spiegel D. Decrease in depression symptoms is associated with longer survival in patients with metastatic breast cancer: a secondary analysis. J Clin Oncol. 2011;29(4):413–420. doi:10.1200/JCO.2010.28.4455.
  • Yang H, Xia L, Chen J, Zhang S, Martin V, Li Q, Lin S, Chen J, Calmette J, Lu M, et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 2019;25(9):1428–1441.
  • Deng Y, Xia X, Zhao Y, Zhao Z, Martinez C, Yin W, Yao J, Hang Q, Wu W, Zhang J, et al. Glucocorticoid receptor regulates PD-L1 and MHC-I in pancreatic cancer cells to promote immune evasion and immunotherapy resistance. Nat Commun. 2021;12(1):7041. doi:10.1038/s41467-021-27349-7.
  • Qiao G, Chen M, Mohammadpour H, MacDonald CR, Bucsek MJ, Hylander BL, Barbi JJ, Repasky EA. Chronic adrenergic stress contributes to metabolic Dysfunction and an Exhausted Phenotype in T cells in the tumor microenvironment. Cancer Immunol Res. 2021;9(6):651–664.
  • Rijo-Ferreira F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome Med. 2019;11(1):82. doi:10.1186/s13073-019-0704-0.
  • Boesch M, Zeimet AG, Reimer D, Schmidt S, Gastl G, Parson W, Spoeck F, Hatina J, Wolf D, Sopper S, et al. The side population of ovarian cancer cells defines a heterogeneous compartment exhibiting stem cell characteristics. Oncotarget. 2014;5(16):7027–7039. doi:10.18632/oncotarget.2053.
  • Reimer D, Boesch M, Wolf D, Marth C, Sopper S, Hatina J, Altevogt P, Parson W, Hackl H, Zeimet AG, et al. Truncated isoform Vav3.1 is highly expressed in ovarian cancer stem cells and clinically relevant in predicting prognosis and platinum-response. Int J Cancer. 2018;142(8):1640–1651. doi:10.1002/ijc.31186.
  • Boesch M, Onder L, Cheng HW, Novkovic M, Morbe U, Sopper S, Gastl G, Jochum W, Ruhstaller T, Knauer M, et al. Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. Oncoimmunology. 2018;7(4):e1414129. doi:10.1080/2162402X.2017.1414129.
  • Diamantopoulou Z, Castro-Giner F, Schwab FD, Foerster C, Saini M, Budinjas S, Strittmatter K, Krol I, Seifert B, Heinzelmann-Schwarz V, et al. The metastatic spread of breast cancer accelerates during sleep. Nature. 2022;607(7917):156–162. doi:10.1038/s41586-022-04875-y.
  • Hadadi E, Taylor W, Li XM, Aslan Y, Villote M, Riviere J, Duvallet G, Auriau C, Dulong S, Raymond-Letron I, et al. Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nat Commun. 2020;11(1):3193. doi:10.1038/s41467-020-16890-6.
  • Kelly RM, Healy U, Sreenan S, McDermott JH, Coogan AN. Clocks in the clinic: circadian rhythms in health and disease. Postgrad Med J. 2018;94:653–658.
  • Lane JM, Qian J, Mignot E, Redline S, Scheer F, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet. 2023;24(1):4–20. doi:10.1038/s41576-022-00519-z.
  • Dong D, Yang D, Lin L, Wang S, Wu B. Circadian rhythm in pharmacokinetics and its relevance to chronotherapy. Biochem Pharmacol. 2020;178:114045. doi:10.1016/j.bcp.2020.114045.
  • Wang C, Lutes LK, Barnoud C, Scheiermann C. The circadian immune system. Sci Immunol. 2022;7:eabm2465.
  • Druzd D, Matveeva O, Ince L, Harrison U, He W, Schmal C, Herzel H, Tsang AH, Kawakami N, Leliavski A, et al. Lymphocyte circadian clocks control Lymph Node Trafficking and adaptive immune responses. Immunity. 2017;46(1):120–132. doi:10.1016/j.immuni.2016.12.011.
  • Ince LM, Barnoud C, Lutes LK, Pick R, Wang C, Sinturel F, Chen C-S, de Juan A, Weber J, Holtkamp SJ, et al. Influence of circadian clocks on adaptive immunity and vaccination responses. Nat Commun. 2023;14(1):476. doi:10.1038/s41467-023-35979-2.
  • de Bree LCJ, Mourits VP, Koeken VA, Moorlag SJ, Janssen R, Folkman L, Barreca D, Krausgruber T, Fife-Gernedl V, Novakovic B, et al. Circadian rhythm influences induction of trained immunity by BCG vaccination. J Clin Invest. 2020;130(10):5603–5617.
  • Otasowie CO, Tanner R, Ray DW, Austyn JM, BJ C. Chronovaccination: harnessing circadian rhythms to optimize immunisation strategies. Front Immunol. 2022;13:977525.
  • Long JE, Drayson MT, Taylor AE, Toellner KM, Lord JM, Phillips AC. Morning vaccination enhances antibody response over afternoon vaccination: a cluster-randomised trial. Vaccine. 2016;34(24):2679–2685. doi:10.1016/j.vaccine.2016.04.032.
  • Long JE, Drayson MT, Taylor AE, Toellner KM, Lord JM, Phillips AC. Corrigendum to ‘morning vaccination enhances antibody response over afternoon vaccination: a cluster-randomised trial. [Vaccine 34 (2016). 2016;34(40):2679–2685]. Vaccine 4842.
  • Zhang H, Liu Y, Liu D, Zeng Q, Li L, Zhou Q, Li M, Mei J, Yang N, Mo S, et al. Time of day influences immune response to an inactivated vaccine against SARS-CoV-2. Cell Res. 2021;31(11):1215–1217. doi:10.1038/s41422-021-00541-6.
  • Qian DC, Kleber T, Brammer B, Xu KM, Switchenko JM, Janopaul-Naylor JR, Zhong J, Yushak ML, Harvey RD, Paulos CM, et al. Effect of immunotherapy time-of-day infusion on overall survival among patients with advanced melanoma in the USA (MEMOIR): a propensity score-matched analysis of a single-centre, longitudinal study. Lancet Oncol. 2021;22(12):1777–1786. doi:10.1016/S1470-2045(21)00546-5.
  • Karaboue A, Collon T, Pavese I, Bodiguel V, Cucherousset J, Zakine E, Innominato PF, Bouchahda M, Adam R, Lévi F, et al. Time-dependent efficacy of checkpoint inhibitor nivolumab: results from a Pilot study in patients with metastatic non-small-cell lung cancer. Cancers Basel. 2022;14(4):896. doi:10.3390/cancers14040896.
  • Tsuruta A, Shiiba Y, Matsunaga N, Fujimoto M, Yoshida Y, Koyanagi S, Ohdo S. Diurnal expression of PD-1 on tumor-associated Macrophages Underlies the Dosing time-dependent antitumor effects of the PD-1/PD-L1 inhibitor BMS-1 in B16/BL6 melanoma-bearing mice. Mol Cancer Res. 2022;20(6):972–982.
  • Berner F, Bomze D, Diem S, Ali OH, Fassler M, Ring S, Niederer R, Ackermann CJ, Baumgaertner P, Pikor N, et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 2019;5(7): 1043–1047. doi:10.1001/jamaoncol.2019.0402.
  • Das S, Johnson DB. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer. 2019;7:306.
  • Rogado J, Sanchez-Torres JM, Romero-Laorden N, Ballesteros AI, Pacheco-Barcia V, Ramos-Levi A, Arranz R, Lorenzo A, Gullón P, Donnay O, et al. Immune-related adverse events predict the therapeutic efficacy of anti-PD-1 antibodies in cancer patients. Eur J Cancer. 2019;109:21–27.
  • Eggermont AMM, Kicinski M, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, Haydon A, Khattak A, Carlino MS, et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2020;6(4):519–527. doi:10.1001/jamaoncol.2019.5570.
  • Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Sci. 2018;359(6371):91–97.
  • Schett A, Rothschild SI, Curioni-Fontecedro A, Krahenbuhl S, Fruh M, Schmid S, Driessen C, Joerger M. Predictive impact of antibiotics in patients with advanced non small-cell lung cancer receiving immune checkpoint inhibitors: antibiotics immune checkpoint inhibitors in advanced NSCLC. Cancer Chemother Pharmacol. 2020;85(1):121–131.
  • Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol. 2023;21(5):280–295.
  • Dinh A, Ropers J, Duran C, Davido B, Deconinck L, Matt M, Senard O, Lagrange A, Makhloufi S, Mellon G, et al. Discontinuing beta-lactam treatment after 3 days for patients with community-acquired pneumonia in non-critical care wards (PTC): a double-blind, randomised, placebo-controlled, non-inferiority trial. Lancet. 2021;397(10280):1195–1203.
  • Ginsburg AS, Mvalo T, Nkwopara E, McCollum ED, Phiri M, Schmicker R, Hwang J, Ndamala CB, Phiri A, Lufesi N, et al. Amoxicillin for 3 or 5 days for chest-indrawing pneumonia in Malawian children. N Engl J Med. 2020;383(1):13–23. doi:10.1056/NEJMoa1912400.
  • Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–148. doi:10.1016/j.ejca.2015.11.016.
  • Zhang H, Li X, Huang X, Li J, Ma H, Zeng R. Impact of corticosteroid use on outcomes of non-small-cell lung cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. J Clin Pharm Ther. 2021;46:927–935.
  • Li J, Yang K, Zhao L, Bai C, Sun Z. Impact of corticosteroids use on efficacy of immune checkpoint inhibitors in cancer patients: a meta-analysis. J Clin Oncol. 2020;38:e15234–e.
  • Jessurun CAC, Hulsbergen AFC, de Wit AE, Tewarie IA, Snijders TJ, Verhoeff JJC, Phillips JG, Reardon DA, Mekary RA, Broekman MLD. The combined use of steroids and immune checkpoint inhibitors in brain metastasis patients: a systematic review and meta-analysis. Neuro Oncol. 2021;23(8):1261–1272.
  • Gupta S, Garcia-Carro C, Prosek JM, Glezerman I, Herrmann SM, Garcia P, Abudayyeh A, Lumlertgul N, Malik AB, Loew S, et al. Shorter versus longer corticosteroid duration and recurrent immune checkpoint inhibitor-associated AKI. J Immunother Cancer. 2022;10(9):e005646. doi:10.1136/jitc-2022-005646.
  • Bessede A, Marabelle A, Guegan JP, Danlos FX, Cousin S, Peyraud F, Chaput N, Spalato M, Roubaud G, Cabart M, et al. Impact of acetaminophen on the efficacy of immunotherapy in cancer patients. Ann Oncol. 2022;33(9):909–915. doi:10.1016/j.annonc.2022.05.010.
  • Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, Zahurak M, Yang SC, Jones DR, Broderick S, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. 2018;378(21):1976–1986. doi:10.1056/NEJMoa1716078.
  • Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM, Felip E, Broderick SR, Brahmer JR, Swanson SJ, et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. 2022;386(21):1973–1985. doi:10.1056/NEJMoa2202170.
  • Gaziano JM, Sesso HD, Christen WG, Bubes V, Smith JP, MacFadyen J, Schvartz M, Manson JE, Glynn RJ, Buring JE, et al. Multivitamins in the prevention of cancer in men: the physicians’ health study II randomized controlled trial. JAMA. 2012;308(18):1871–1880. doi:10.1001/jama.2012.14641.
  • Park SY, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. Multivitamin use and the risk of mortality and cancer incidence: the multiethnic cohort study. Am J Epidemiol. 2011;173(8):906–914. doi:10.1093/aje/kwq447.
  • Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, Gibson H, Gordon D, Copeland T, D’Agostino D, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44. doi:10.1056/NEJMoa1809944.
  • Vaughan-Shaw PG, Buijs LF, Blackmur JP, Theodoratou E, Zgaga L, Din FVN, Farrington SM, Dunlop MG. The effect of vitamin D supplementation on survival in patients with colorectal cancer: systematic review and meta-analysis of randomised controlled trials. Br J Cancer. 2020;123(11):1705–1712.
  • Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic efficacy: a systematic review of the evidence from randomized controlled trials. Cancer Treat Rev. 2007;33(5):407–418. doi:10.1016/j.ctrv.2007.01.005.
  • Jacobs C, Hutton B, Ng T, Shorr R, Clemons M. Is there a role for oral or intravenous ascorbate (vitamin C) in treating patients with cancer? A systematic review. Oncologist. 2015;20(2):210–223. doi:10.1634/theoncologist.2014-0381.
  • van Gorkom GNY, Lookermans EL, Van Elssen C, Bos GMJ. The effect of vitamin C (ascorbic acid) in the treatment of patients with cancer: a systematic review. Nutrients. 2019;11(5).
  • Zaher A, Stephens LM, Miller AM, Hartwig SM, Stolwijk JM, Petronek MS, Zacharias ZR, Wadas TJ, Monga V, Cullen JJ, et al. Pharmacological ascorbate as a novel therapeutic strategy to enhance cancer immunotherapy. Front Immunol. 2022;13:989000. doi:10.3389/fimmu.2022.989000.
  • Magri A, Germano G, Lorenzato A, Lamba S, Chila R, Montone M, Amodio V, Ceruti T, Sassi F, Arena S, et al. High-dose vitamin C enhances cancer immunotherapy. Sci Transl Med. 2020;12(532). doi:10.1126/scitranslmed.aay8707.
  • Luchtel RA, Bhagat T, Pradhan K, Jacobs WR Jr., Levine M, Verma A, Shenoy N. High-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse model. Proc Natl Acad Sci U S A. 2020;117(3):1666–1677.
  • Li P, Zhu X, Cao G, Wu R, Li K, Yuan W, Chen B, Sun G, Xia X, Zhang H, et al. 1alpha,25(OH)(2)D(3) reverses exhaustion and enhances antitumor immunity of human cytotoxic T cells. J Immunother Cancer. 2022;10(3):e003477. doi:10.1136/jitc-2021-003477.
  • Stucci LS, D’Oronzo S, Tucci M, Macerollo A, Ribero S, Spagnolo F, Marra E, Picasso V, Orgiano L, Marconcini R, et al. Vitamin D in melanoma: controversies and potential role in combination with immune check-point inhibitors. Cancer Treat Rev. 2018;69:21–28. doi:10.1016/j.ctrv.2018.05.016.
  • Yuan X, Duan Y, Xiao Y, Sun K, Qi Y, Zhang Y, Ahmed Z, Moiani D, Yao J, Li H, et al. Vitamin E enhances cancer immunotherapy by reinvigorating dendritic cells via targeting checkpoint SHP1. Cancer Discov. 2022;12(7):1742–1759. doi:10.1158/2159-8290.CD-21-0900.
  • Galus L, Michalak M, Lorenz M, Stoinska-Swiniarek R, Tusien Malecka D, Galus A, Kolenda T, Leporowska E, Mackiewicz J. Vitamin D supplementation increases objective response rate and prolongs progression-free time in patients with advanced melanoma undergoing anti-PD1 therapy. Cancer. 2023;129(13): 2047–2055. doi:10.1002/cncr.34718.
  • Xu YP, Lv L, Liu Y, Smith MD, Li WC, Tan XM, Cheng M, Li Z, Bovino M, Aubé J, et al. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J Clin Invest. 2019;129(10):4316–4331. doi:10.1172/JCI129317.
  • Yu YR, Imrichova H, Wang H, Chao T, Xiao Z, Gao M, Rincon-Restrepo M, Franco F, Genolet R, Cheng WC, et al. Disturbed mitochondrial dynamics in CD8(+) TILs reinforce T cell exhaustion. Nat Immunol. 2020;21(12):1540–1551.
  • Caccialanza R, Cereda E, Agustoni F, Klersy C, Casirati A, Montagna E, Carnio S, Novello S, Milella M, Pilotto S, et al. Multicentre, randomised, open-label, parallel-group, clinical phase II study to evaluate immunonutrition in improving efficacy of immunotherapy in patients with metastatic non-small cell lung cancer, undergoing systematic nutritional counseling. BMC Cancer. 2022;22(1):1212. doi:10.1186/s12885-022-10296-x.
  • Li H, Xiao Y, Li Q, Yao J, Yuan X, Zhang Y, et al. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1. Cancer Cell. 2022;40(1):36–52 e9.
  • Kelly MP, Barker M. Why is changing health-related behaviour so difficult? Public Health. 2016;136:109–116. doi:10.1016/j.puhe.2016.03.030.
  • Jacobson NC, Kowatsch T, Marsch LA. Chapter 1 - introduction: a vision for the field of digital therapeutics. In: Jacobson N, Kowatsch T, and Marsch L editors. Digital Therapeutics for Mental Health and addiction. Academic Press; 2023. pp. 1–4. https://www.sciencedirect.com/science/article/abs/pii/B9780323900454000083.
  • Wang C, Lee C, Shin H. Digital therapeutics from bench to bedside. NPJ Digital Med. 2023;6:38.
  • Fürstenau D, Gersch M, Schreiter S. Digital therapeutics (DTx). Bus Inf Syst Eng. 2023;65(3):349–360. doi:10.1007/s12599-023-00804-z.
  • Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, Murphy SA. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med. 2018;52(6):446–462.
  • Hardeman W, Houghton J, Lane K, Jones A, Naughton F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. Int J Behav Nutr Phys Act. 2019;16(1):31. doi:10.1186/s12966-019-0792-7.
  • Kowatsch T, Fleisch E. Digital health interventions. In: Gassmann O Ferrandina F, editors Connected business: create value in a networked economy. Cham: Springer International Publishing; 2021. pp. 71–95.
  • Hurmuz MZM, Jansen-Kosterink SM, Beinema T, Fischer K, Op den Akker H, Hermens HJ. Evaluation of a virtual coaching system eHealth intervention: a mixed methods observational cohort study in the Netherlands. Internet Interv. 2022;27:100501.
  • Bevilacqua R, Casaccia S, Cortellessa G, Astell A, Lattanzio F, Corsonello A, D'Ascoli P, Paolini S, Di Rosa M, Rossi L, et al. Coaching through technology: a systematic review into efficacy and Effectiveness for the ageing population. Int J Environ Res Public Health. 2020;17(16):5930. doi:10.3390/ijerph17165930.
  • Albers N, Hizli B, Scheltinga BL, Meijer E, Brinkman WP. Setting physical activity goals with a virtual coach: vicarious experiences, personalization and acceptance. J Med Syst. 2023;47(1):15. doi:10.1007/s10916-022-01899-9.
  • Aggarwal A, Tam CC, Wu D, Li X, Qiao S. Artificial intelligence-based chatbots for promoting health behavioral changes: systematic review. J Med Internet Res. 2023;25:e40789.
  • Han R, Todd A, Wardak S, Partridge SR, Raeside R. Feasibility and acceptability of chatbots for nutrition and physical activity health promotion among adolescents: systematic scoping review with adolescent consultation. JMIR Hum Facto. 2023;10:e43227. doi:10.2196/43227.
  • Martinengo L, Jabir AI, Goh WWT, Lo NYW, Ho MR, Kowatsch T, Atun R, Michie S, Tudor Car L. Conversational agents in health care: scoping review of their behavior change techniques and underpinning theory. J Med Internet Res. 2022;24(10):e39243.
  • Canali S, Schiaffonati V, Aliverti A, Mulvaney S. Challenges and recommendations for wearable devices in digital health: data quality, interoperability, health equity, fairness. PLOS Digit Health. 2022;1(10):e0000104. doi:10.1371/journal.pdig.0000104.
  • Ferguson T, Olds T, Curtis R, Blake H, Crozier AJ, Dankiw K, Dumuid D, Kasai D, O'Connor E, Virgara R, et al. Effectiveness of wearable activity trackers to increase physical activity and improve health: a systematic review of systematic reviews and meta-analyses. Lancet Digit Health. 2022;4(8):e615–e26.
  • Patel MS, Asch DA, Volpp KG. Wearable devices as facilitators, not drivers, of health behavior change. JAMA. 2015;313(5):459–460. doi:10.1001/jama.2014.14781.
  • Fitzsimmons-Craft EE, Taylor CB, Graham AK, Sadeh-Sharvit S, Balantekin KN, Eichen DM, Monterubio GE, Goel NJ, Flatt RE, Karam AM, et al. Effectiveness of a Digital cognitive behavior therapy-guided self-help intervention for eating disorders in college women: a cluster randomized clinical trial. JAMA Netw Open. 2020;3(8):e2015633.
  • Ebrahimi N, Mohammadzadeh N, Ayyoubzadeh SM. Evaluation of overweight control applications with cognitive-behavioral therapy approach: a systematic review. Health Sci Rep. 2023;6:e1157.
  • Hwang H, Kim SM, Netterstrom B, Han DH. The efficacy of a smartphone-based App on stress reduction: randomized controlled trial. J Med Internet Res. 2022;24(2):e28703. doi:10.2196/28703.
  • Schuman-Olivier Z, Trombka M, Lovas DA, Brewer JA, Vago DR, Gawande R, Dunne JP, Lazar SW, Loucks EB, Fulwiler C, et al. Mindfulness and behavior change. Harv Rev Psychiatry. 2020;28(6):371–394. doi:10.1097/HRP.0000000000000277.
  • Roche AI, Kroska EB, Denburg NL. Acceptance- and mindfulness-based interventions for health behavior change: systematic reviews and meta-analyses. J Contextual Behav Sci. 2019;13:74–93.
  • Bailey RR. Goal setting and action planning for health behavior change. Am J Lifestyle Med. 2019;13(6):615–618. doi:10.1177/1559827617729634.
  • Lorig K, Laurent DD, Plant K, Krishnan E, Ritter PL. The components of action planning and their associations with behavior and health outcomes. Chronic Illn. 2014;10(1):50–59. doi:10.1177/1742395313495572.
  • Kramer JN, Kunzler F, Mishra V, Smith SN, Kotz D, Scholz U, Fleisch E, Kowatsch T. Which components of a smartphone walking app help users to reach personalized step goals? Results from an optimization trial. Ann Behav Med. 2020;54(7):518–528.
  • Tagliabue M, Squatrito V, Presti G. Models of cognition and their applications in behavioral economics: a conceptual framework for nudging derived from behavior analysis and relational frame theory. Front Psychol. 2019;10:2418. doi:10.3389/fpsyg.2019.02418.
  • Van Dessel P, Boddez Y, Hughes S. Nudging societally relevant behavior by promoting cognitive inferences. Sci Rep. 2022;12(1):9201. doi:10.1038/s41598-022-12964-1.
  • Edwards EA, Lumsden J, Rivas C, Steed L, Edwards LA, Thiyagarajan A, Sohanpal R, Caton H, Griffiths CJ, Munafò MR, et al. Gamification for health promotion: systematic review of behaviour change techniques in smartphone apps. BMJ Open. 2016;6(10):e012447. doi:10.1136/bmjopen-2016-012447.
  • Lukic YX, Teepe GW, Fleisch E, Kowatsch T. Breathing as an input modality in a gameful breathing training app (breeze 2): development and Evaluation study. JMIR Serious Games. 2022;10(3):e39186. doi:10.2196/39186.
  • Michaelsen MM, Esch T. Motivation and reward mechanisms in health behavior change processes. Brain Res. 2021;1757:147309. doi:10.1016/j.brainres.2021.147309.
  • Vlaev I, King D, Darzi A, Dolan P. Changing health behaviors using financial incentives: a review from behavioral economics. BMC Public Health. 2019;19(1):1059. doi:10.1186/s12889-019-7407-8.
  • Castro O, Mair JL, Salamanca-Sanabria A, Alattas A, Keller R, Zheng S, Jabir, A, Lin, X, Frese, BF, Lim, CS, et al. Development of “LvL UP 1.0”: a smartphone-based, conversational agent-delivered holistic lifestyle intervention for the prevention of non-communicable diseases and common mental disorders. Frontiers Digital Health. 2023;5:1039171. doi:10.3389/fdgth.2023.1039171.
  • Ollier J, Neff S, Dworschak C, Sejdiji A, Santhanam P, Keller R, Xiao G, Asisof A, Rüegger D, Bérubé C, et al. Elena+ care for COVID-19, a pandemic lifestyle care intervention: intervention design and study protocol. Front Public Health. 2021;9:625640. doi:10.3389/fpubh.2021.625640.
  • Karavasiloglou N, Pestoni G, Wanner M, Faeh D, Rohrmann S, Cheng X. Healthy lifestyle is inversely associated with mortality in cancer survivors: results from the Third national health and nutrition examination survey (NHANES III). PloS One. 2019;14(6):e0218048. doi:10.1371/journal.pone.0218048.
  • GBDCRF C. The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the global burden of disease study 2019. Lancet. 2022;400:563–591.
  • Guglielmi G. Almost half of cancer deaths are preventable. Nature. 2022. doi:10.1038/d41586-022-02355-x.
  • Gallant MP. 305Social networks, social support, and health-related behavior. In: Martin L, and DiMatteo M editors. The Oxford Handbook of Health Communication, behavior change, and treatment adherence. Oxford University Press; 2013. p. 0. https://academic.oup.com/edited-volume/28130/chapter-abstract/212327762?redirectedFrom=fulltext.
  • Arnason A, Langarica N, Dugas LR, Mora N, Luke A, Markossian T. Family-based lifestyle interventions: what makes them successful? A systematic literature review. Prev Med Rep. 2021;21:101299.
  • Greaney ML, Puleo E, Sprunck-Harrild K, Haines J, Houghton SC, Emmons KM. Social support for changing multiple behaviors: factors associated with seeking support and the impact of Offered support. Health Education & Behavior. 2018;45(2):198–206. doi:10.1177/1090198117712333.
  • Mair JL, Salamanca-Sanabria A, Augsburger M, Frese BF, Abend S, Jakob R, Kowatsch T, Haug S. Effective behavior change techniques in Digital health interventions for the prevention or management of noncommunicable diseases: an umbrella review. Ann Behav Med. 2023;57(10): 817–835. doi:10.1093/abm/kaad041.
  • Wang ML, Lemon SC, Clausen K, Whyte J, Rosal MC. Design and methods for a community-based intervention to reduce sugar-sweetened beverage consumption among youth: H(2)GO! study. BMC Public Health. 2016;16:1150.
  • Keller R, Hartmann S, Teepe GW, Lohse KM, Alattas A, Tudor Car L, Müller-Riemenschneider F, von Wangenheim F, Mair JL, Kowatsch T, et al. Digital behavior change interventions for the prevention and management of type 2 diabetes: systematic market analysis. J Med Internet Res. 2022;24(1):e33348. doi:10.2196/33348.
  • Safavi K, Mathews SC, Bates DW, Dorsey ER, Cohen AB. Top-Funded Digital health companies and their impact on high-burden, high-cost conditions. Health Aff (Millwood). 2019;38:115–123.
  • Keum J, Chung MJ, Kim Y, Ko H, Sung MJ, Jo JH, Park JY, Bang S, Park SW, Song SY, et al. Usefulness of smartphone apps for improving nutritional status of pancreatic cancer patients: randomized controlled trial. JMIR Mhealth Uhealth. 2021;9(8):e21088. doi:10.2196/21088.
  • Low CA, Danko M, Durica KC, Vega J, Li M, Kunta AR, Mulukutla R, Ren Y, Sereika SM, Bartlett DL, et al. A real-time Mobile intervention to reduce sedentary behavior before and after cancer surgery: Pilot randomized controlled trial. JMIR Perioper Med. 2023;6:e41425. doi:10.2196/41425.
  • Phillips SM, Penedo FJ, Collins LM, Solk P, Siddique J, Song J, Cella D, Courneya KS, Ackermann RT, Welch WA, et al. Optimization of a technology-supported physical activity promotion intervention for breast cancer survivors: results from Fit2Thrive. Cancer. 2022;128(5):1122–1132. doi:10.1002/cncr.34012.
  • Blair CK, Harding E, Wiggins C, Kang H, Schwartz M, Tarnower A, Du R, Kinney AY. A home-based Mobile health intervention to Replace sedentary time with light physical activity in older cancer survivors: randomized controlled Pilot trial. JMIR Cancer. 2021;7(2):e18819.
  • Subnis UB, Farb NA, Piedalue KL, Speca M, Lupichuk S, Tang PA, Faris P, Thoburn M, Saab BJ, Carlson LE. A smartphone app-based mindfulness intervention for cancer survivors: protocol for a randomized controlled trial. JMIR Res Protoc. 2020;9(5):e15178.
  • Borosund E, Ehlers SL, Clark MM, Andrykowski MA, Cvancarova Smastuen M, Solberg Nes L. Digital stress management in cancer: testing StressProffen in a 12-month randomized controlled trial. Cancer. 2022;128(7):1503–1512. doi:10.1002/cncr.34046.
  • Stern AD, Bronneke J, Debatin JF, Hagen J, Matthies H, Patel S, Clay I, Eskofier B, Herr A, Hoeller K, et al. Advancing digital health applications: priorities for innovation in real-world evidence generation. Lancet Digit Health. 2022;4(3):e200–e6.
  • Soukup T, Lamb BW, Arora S, Darzi A, Sevdalis N, Green JS. Successful strategies in implementing a multidisciplinary team working in the care of patients with cancer: an overview and synthesis of the available literature. J Multidiscip Healthc. 2018;11:49–61. doi:10.2147/JMDH.S117945.
  • Prabhu Das I, Baker M, Altice C, Castro KM, Brandys B, Mitchell SA. Outcomes of multidisciplinary treatment planning in US cancer care settings. Cancer. 2018;124(18):3656–3667. doi:10.1002/cncr.31394.
  • JC H. Psycho-oncology: overview, obstacles and opportunities. Psychooncology. 2018;27:1364–1376.