1,131
Views
0
CrossRef citations to date
0
Altmetric
Original research

Driver mutations in GNAQ and GNA11 genes as potential targets for precision immunotherapy in uveal melanoma patients

, , , , , , , , , , , , & show all
Article: 2261278 | Received 19 Apr 2023, Accepted 17 Sep 2023, Published online: 24 Oct 2023

References

  • Mallone S, De Vries E, Guzzo M, Midena E, Verne J, Coebergh JW, Marcos-Gragera R, Ardanaz E, Martinez R, Chirlaque MD, et al. Descriptive epidemiology of malignant mucosal and uveal melanomas and adnexal skin carcinomas in Europe. Eur J Cancer. 2012 May;48(8):1167–13. doi:10.1016/j.ejca.2011.10.004.
  • Yang J, Manson DK, Marr BP, Carvajal RD. Treatment of uveal melanoma: where are we now? Ther Adv Med Oncol. 2018;10:1758834018757175. doi:10.1177/1758834018757175.
  • Nathan P, Hassel JC, Rutkowski P, Baurain JF, Butler MO, Schlaak M, Sullivan RJ, Ochsenreither S, Dummer R, Kirkwood JM, et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med. 2021 Sep 23;385(13):1196–1206. doi:10.1056/NEJMoa2103485.
  • Carvajal RD, Butler MO, Shoushtari AN, Hassel JC, Ikeguchi A, Hernandez-Aya L, Nathan P, Hamid O, Piulats JM, Rioth M, et al. Clinical and molecular response to tebentafusp in previously treated patients with metastatic uveal melanoma: a phase 2 trial. Nat Med. 2022 Nov;28(11):2364–2373. doi:10.1038/s41591-022-02015-7.
  • Jager MJ, Shields CL, Cebulla CM, Abdel-Rahman MH, Grossniklaus HE, Stern MH, Carvajal RD, Belfort RN, Jia R, Shields JA, et al. Uveal melanoma. Nat Rev Dis Primers. 2020 Apr 9;6(1):24. doi:10.1038/s41572-020-0158-0.
  • Park JJ, Diefenbach RJ, Joshua AM, Kefford RF, Carlino MS, Rizos H. Oncogenic signaling in uveal melanoma. Pigment Cell Melanoma Res. 2018 Nov;31(6):661–672. doi:10.1111/pcmr.12708.
  • Shain AH, Bagger MM, Yu R, Chang D, Liu S, Vemula S, Weier JF, Wadt K, Heegaard S, Bastian BC, et al. The genetic evolution of metastatic uveal melanoma. Nat Genet. 2019 Jul;51(7):1123–1130. doi:10.1038/s41588-019-0440-9.
  • Piulats JM, Espinosa E, de la Cruz Merino L, Varela M, Alonso Carrión L, Martín-Algarra S, López Castro R, Curiel T, Rodríguez-Abreu D, Redrado M, et al. Nivolumab plus ipilimumab for treatment-naïve metastatic uveal melanoma: an open-label, multicenter, phase II trial by the Spanish Multidisciplinary melanoma group (GEM-1402). J Clin Oncol. 2021 Feb 20;39(6):586–598. doi:10.1200/JCO.20.00550.
  • Algazi AP, Tsai KK, Shoushtari AN, Munhoz RR, Eroglu Z, Piulats JM, Ott PA, Johnson DB, Hwang J, Daud AI, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016 Nov 15;122(21):3344–3353. doi:10.1002/cncr.30258.
  • Niederkorn JY. Immune escape mechanisms of intraocular tumors. Prog Retin Eye Res. 2009 Sep;28(5):329–347. doi:10.1016/j.preteyeres.2009.06.002.
  • Cross NA, Murray AK, Rennie IG, Ganesh A, Sisley K. Instability of microsatellites is an infrequent event in uveal melanoma. Melanoma Res. 2003 Oct;13(5):435–440. doi:10.1097/00008390-200310000-00001.
  • García-Mulero S, Alonso MH, Del Carpio LP, Sanz-Pamplona R, Piulats JM. Additive role of immune system infiltration and angiogenesis in uveal melanoma progression. Int J Mol Sci. 2021 Mar 6;22(5):2669. doi:10.3390/ijms22052669.
  • de la Cruz PO, Specht CS, McLean IW. Lymphocytic infiltration in uveal malignant melanoma. Cancer. 1990 Jan 1;65(1):112–115. doi:10.1002/1097-0142(19900101)65:1<112:AID-CNCR2820650123>3.0.CO;2-X.
  • Whelchel JC, Farah SE, McLean IW, Burnier MN. Immunohistochemistry of infiltrating lymphocytes in uveal malignant melanoma. Invest Ophthalmol Visual Sci. 1993 Jul;34(8):2603–2606.
  • Pearlman AH, Hwang MS, Konig MF, Hsiue EHC, Douglass J, DiNapoli SR, Mog BJ, Bettegowda C, Pardoll DM, Gabelli SB, et al. Targeting public neoantigens for cancer immunotherapy. Nat Cancer. 2021 May;2(5):487–497. doi:10.1038/s43018-021-00210-y.
  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401–404. doi:10.1158/2159-8290.CD-12-0095.
  • Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res. 2008 Jul 1;36(suppl_2):W509–W512. doi:10.1093/nar/gkn202.
  • Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020 Jul 2;48(W1):W449–54. doi:10.1093/nar/gkaa379.
  • Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012 Mar;64(3):177–186. doi:10.1007/s00251-011-0579-8.
  • Phloyphisut P, Pornputtapong N, Sriswasdi S, Chuangsuwanich E. MHCSeqNet: a deep neural network model for universal MHC binding prediction. BMC Bioinform. 2019 May 28;20(1):270. doi:10.1186/s12859-019-2892-4.
  • O’Donnell TJ, Rubinsteyn A, Laserson U. Mhcflurry 2.0: improved Pan-allele prediction of MHC class I-Presented peptides by incorporating antigen processing. Cell Syst. 2020 Oct 21;11(4):418–419. doi:10.1016/j.cels.2020.09.001.
  • Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003 May;12(5):1007–1017. doi:10.1110/ps.0239403.
  • Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics. 2016 Feb 15;32(4):511–517. doi:10.1093/bioinformatics/btv639.
  • Rasmussen M, Fenoy E, Harndahl M, Kristensen AB, Nielsen IK, Nielsen M, Buus S. Pan-specific prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity. J Immunol. 2016 Aug 15;197(4):1517–1524. doi:10.4049/jimmunol.1600582.
  • Bassani-Sternberg M, Chong C, Guillaume P, Solleder M, Pak H, Gannon PO, Kandalaft LE, Coukos G, Gfeller D. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput Biol. 2017 Aug;13(8):e1005725. doi:10.1371/journal.pcbi.1005725.
  • Peters B, Bulik S, Tampe R, Van Endert PM, Holzhütter HG. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol. 2003 Aug 15;171(4):1741–1749. doi:10.4049/jimmunol.171.4.1741.
  • Nielsen M, Lundegaard C, Lund O, Keşmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics. 2005 Apr;57(1–2):33–41. doi:10.1007/s00251-005-0781-7.
  • Fairley S, Lowy-Gallego E, Perry E, Flicek P. The International genome sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 2020 Jan 8;48(D1):D941–7. doi:10.1093/nar/gkz836.
  • Punta M, Jennings VA, Melcher AA, Lise S. The immunogenic potential of recurrent cancer drug resistance mutations: an in silico study. Front Immunol. 2020;11:524968. doi:10.3389/fimmu.2020.524968.
  • Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 2014 Dec 1;30(23):3310–3316. doi:10.1093/bioinformatics/btu548.
  • Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017 03;18(1):248–262. doi:10.1016/j.celrep.2016.12.019.
  • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013 Jan 16;14(1):7. doi:10.1186/1471-2105-14-7.
  • Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017 Aug 1;127(8):2930–2940. doi:10.1172/JCI91190.
  • Ma J, Weng L, Bastian BC, Chen X. Functional characterization of uveal melanoma oncogenes. Oncogene. 2021 Jan;40(4):806–820. doi:10.1038/s41388-020-01569-5.
  • Maziarz M, Leyme A, Marivin A, Luebbers A, Patel PP, Chen Z, Sprang SR, Garcia-Marcos M. Atypical activation of the G protein Gαq by the oncogenic mutation Q209P. J Biol Chem. 2018 Dec 21;293(51):19586–19599. doi:10.1074/jbc.RA118.005291.
  • Larribère L, Utikal J. Update on GNA alterations in cancer: implications for uveal melanoma Treatment. Cancers. 2020 Jun 10;12(6):1524. doi:10.3390/cancers12061524.
  • Marty R, Kaabinejadian S, Rossell D, Slifker MJ, van de Haar J, Engin HB, de Prisco N, Ideker T, Hildebrand WH, Font-Burgada J, et al. MHC-I genotype restricts the oncogenic mutational Landscape. Cell. 2017 Nov 30;171(6):1272–1283.e15. doi:10.1016/j.cell.2017.09.050.
  • Peri A, Greenstein E, Alon M, Pai JA, Dingjan T, Reich-Zeliger S, Barnea E, Barbolin C, Levy R, Arnedo-Pac C, et al. Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. J Clin Invest. 2021 Oct 15;131(20):e129466. doi:10.1172/JCI129466.
  • Javed A, Milhem M. Role of natural killer cells in uveal melanoma. Cancers Basel. 2020 Dec 9;12(12):E3694. doi:10.3390/cancers12123694.
  • Maat W, van der Slik AR, Verhoeven DHJ, Alizadeh BZ, Ly LV, Verduijn W, Luyten GPM, Mulder A, van Hall T, Koning F, et al. Evidence for natural killer cell–mediated protection from metastasis formation in uveal melanoma patients. Invest Ophthalmol Visual Sci. 2009 Jun;50(6):2888–2895. doi:10.1167/iovs.08-2733.
  • Ma D, Luyten GP, Luider TM, Niederkorn JY. Relationship between natural killer cell susceptibility and metastasis of human uveal melanoma cells in a murine model. Invest Ophthalmol Visual Sci. 1995 Feb;36(2):435–441.
  • van Weeghel C, Wierenga APA, Versluis M, van Hall T, van der Velden PA, Kroes WGM, Pfeffer U, Luyten GPM, Jager MJ. Do GNAQ and GNA11 differentially affect inflammation and HLA expression in uveal melanoma? Cancers Basel. 2019 Aug 7;11(8):E1127. doi:10.3390/cancers11081127.
  • Griewank KG, van de Nes J, Schilling B, Moll I, Sucker A, Kakavand H, Haydu LE, Asher M, Zimmer L, Hillen U, et al. Genetic and clinico-pathologic analysis of metastatic uveal melanoma. Mod Pathol. 2014 Feb;27(2):175–183. doi:10.1038/modpathol.2013.138.
  • Bauer J, Kilic E, Vaarwater J, Bastian BC, Garbe C, de Klein A. Oncogenic GNAQ mutations are not correlated with disease-free survival in uveal melanoma. Br J Cancer. 2009 Sep 1;101(5):813–815. doi:10.1038/sj.bjc.6605226.
  • Terai M, Shimada A, Chervoneva I, Hulse L, Danielson M, Swensen J, Orloff M, Wedegaertner PB, Benovic JL, Aplin AE, et al. Prognostic values of G-Protein mutations in metastatic uveal melanoma. Cancers Basel. 2021 Nov 17;13(22):5749. doi:10.3390/cancers13225749.
  • Gurung H, Heidersbach A, Darwish M, Chan P, Li J, Beresini M, Zill O, Wallace A, Tong, AJ, Hascall, D, et al. Discovery of prevalent, clinically actionable tumor neoepitopes via integrated biochemical and cell-based platforms [internet]. Cancer Biology. 2022 Oct; [accessed 2023 Jan 16]. doi:10.1101/2022.10.27.513529.