1,813
Views
0
CrossRef citations to date
0
Altmetric
Trial Watch

Trial watch: beta-blockers in cancer therapy

, , & ORCID Icon
Article: 2284486 | Received 06 Sep 2023, Accepted 13 Nov 2023, Published online: 27 Nov 2023

References

  • Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019;15(9):525–28. doi:10.1038/s41574-019-0228-0.
  • Wick G, Hu Y, Schwarz S, Kroemer G. Immunoendocrine communication via the hypothalamo-pituitary-adrenal axis in autoimmune diseases. Endocr Rev. 1993;14(5):539–563. doi:10.1210/edrv-14-5-539.
  • Gatica S, Aravena D, Echeverria C, Santibanez JF, Riedel CA, Simon F. Effects of adrenergic receptor stimulation on Human hemostasis: a systematic review. Adv Exp Med Biol. 2023;1408:49–63. doi:10.1007/978-3-031-26163-3_3.
  • Glover WE, Greenfield AD, Shanks RG. Effect of dichloroisoprenaline on the peripheral vascular responses to adrenaline in man. Br J Pharmacol Chemother. 1962;19(2):235–244. doi:10.1111/j.1476-5381.1962.tb01185.x.
  • Prichard BN, Gillam PM. Use of Propranolol (inderal) in treatment of hypertension. British Med J. 1964;2(5411):725–727. doi:10.1136/bmj.2.5411.725.
  • Udelsman R, Holbrook NJ. Endocrine and molecular responses to surgical stress. Curr Probl Surg. 1994;31(8):658–720. doi:10.1016/0011-3840(94)90057-4.
  • Udelsman R, Chrousos GP. Hormonal responses to surgical stress. Adv Exp Med Biol. 1988;245:265–272. doi:10.1007/978-1-4899-2064-5_21.
  • Lopez-Otin C, Kroemer G. Hallmarks of health. Cell. 2021;184(1):33–63. doi:10.1016/j.cell.2020.11.034.
  • Kroemer G, McQuade JL, Merad M, Andre F, Zitvogel L. Bodywide ecological interventions on cancer. Nat Med. 2023;29(1):59–74. doi:10.1038/s41591-022-02193-4.
  • Jetschmann JU, Benschop RJ, Jacobs R, Kemper A, Oberbeck R, Schmidt RE, Schedlowski M. Expression and in-vivo modulation of α- and β-adrenoceptors on human natural killer (CD16+) cells. J Neuroimmunol. 1997;74(1–2):159–164. doi:10.1016/s0165-5728(96)00221-4.
  • Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–944. doi:10.1038/nm1447.
  • Thivierge M, Parent JL, Stankova J, Rola-Pleszczynski M. Modulation of formyl peptide receptor expression by IL-10 in human monocytes and neutrophils. J Immunol. 1999;162(6):3590–3595. doi:10.4049/jimmunol.162.6.3590.
  • Whalen MM, Bankhurst AD. Effects of beta-adrenergic receptor activation, cholera toxin and forskolin on human natural killer cell function. Biochem J. 1990;272(2):327–331. doi:10.1042/bj2720327.
  • Yang H, Xia L, Chen J, Zhang S, Martin V, Li Q, Lin S, Chen J, Calmette J, Lu M, et al. Stress–glucocorticoid–TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 2019;25(9):1428–1441. doi:10.1038/s41591-019-0566-4.
  • Hsiehchen D, Naqash AR, Espinoza M, Von Itzstein MS, Cortellini A, Ricciuti B, Owen DH, Laharwal M, Toi Y, Burke M, et al. Association between immune-related adverse event timing and treatment outcomes. Oncoimmunology. 2022;11(1):2017162. doi:10.1080/2162402X.2021.2017162.
  • Ben-Eliyahu S, Shakhar G, Page GG, Stefanski V, Shakhar K. Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and β-adrenoceptors. Neuroimmunomodulation. 2000;8(3):154–164. doi:10.1159/000054276.
  • Moretti S, Massi D, Farini V, Baroni G, Parri M, Innocenti S, Cecchi R, Chiarugi P. β-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Invest. 2013;93(3):279–290. doi:10.1038/labinvest.2012.175.
  • Liu X, Wu WK, Yu L, Li ZJ, Sung JJ, Zhang ST, Cho CH. Epidermal growth factor-induced esophageal cancer cell proliferation requires transactivation of β-adrenoceptors. J Pharmacol Exp Ther. 2008;326(1):69–75. doi:10.1124/jpet.107.134528.
  • Guo K, Ma Q, Wang L, Hu H, Li J, Zhang D. Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep. 2009;22(4):825–830. doi:10.3892/or_00000505.
  • Louault K, Porras T, Lee MH, Muthugounder S, Kennedy RJ, Blavier L, Sarte E, Fernandez GE, Yang F, Pawel BR, et al. Fibroblasts and macrophages cooperate to create a pro-tumorigenic and immune resistant environment via activation of TGF-β/IL-6 pathway in neuroblastoma. Oncoimmunology. 2022;11(1):2146860. doi:10.1080/2162402X.2022.2146860.
  • Partecke LI, Speerforck S, Kading A, Seubert F, Kuhn S, Lorenz E, Schwandke S, Sendler M, Keßler W, Trung DN, et al. Chronic stress increases experimental pancreatic cancer growth, reduces survival and can be antagonised by beta-adrenergic receptor blockade. Int J Pancreatol. 2016;16(3):423–433. doi:10.1016/j.pan.2016.03.005.
  • Cui B, Luo Y, Tian P, Peng F, Lu J, Yang Y, Su Q, Liu B, Yu J, Luo X, et al. Stress-induced epinephrine enhances lactate dehydrogenase a and promotes breast cancer stem-like cells. J Clin Invest. 2019;129(3):1030–1046. doi:10.1172/JCI121685.
  • Kim-Fuchs C, Le CP, Pimentel MA, Shackleford D, Ferrari D, Angst E, Hollande F, Sloan EK. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav Immun. 2014;40:40–47. doi:10.1016/j.bbi.2014.02.019.
  • Angelova M, Mascaux C, Galon J. Evasion before invasion: Pre-cancer immunosurveillance. Oncoimmunology. 2021;10(1):1912250. doi:10.1080/2162402X.2021.1912250.
  • Evans E. A psychological study of cancer. Oxford, England: Dodd Mead; 1926.
  • Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5(10):617–625. doi:10.1016/S1470-2045(04)01597-9.
  • Glaser R, MacCallum RC, Laskowski BF, Malarkey WB, Sheridan JF, Kiecolt-Glaser JK. Evidence for a shift in the th-1 to th-2 cytokine response associated with chronic stress and aging. J Gerontol A Biol Sci Med Sci. 2001;56(8):M477–82. doi:10.1093/gerona/56.8.m477.
  • Wu W, Yamaura T, Murakami K, Murata J, Matsumoto K, Watanabe H, Saiki I. Social isolation stress enhanced liver metastasis of murine colon 26-L5 carcinoma cells by suppressing immune responses in mice. Life Sci. 2000;66(19):1827–1838. doi:10.1016/s0024-3205(00)00506-3.
  • Wu W, Murata J, Murakami K, Yamaura T, Hayashi K, Saiki I. Social isolation stress augments angiogenesis induced by colon 26-L5 carcinoma cells in mice. Clin Exp Metastasis. 2000;18(1):1–10. doi:10.1023/a:1026548715669.
  • Lutgendorf SK, Sood AK, Anderson B, McGinn S, Maiseri H, Dao M, Sorosky JI, De Geest K, Ritchie J, Lubaroff DM, et al. Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 2005;23(28):7105–7113. doi:10.1200/JCO.2005.10.015.
  • Jiang W, Li Y, Li ZZ, Sun J, Li JW, Wei W, Li L, Zhang C, Huang C, Yang S-Y, et al. Chronic restraint stress promotes hepatocellular carcinoma growth by mobilizing splenic myeloid cells through activating β-adrenergic signaling. Brain Behav Immun. 2019;80:825–838. doi:10.1016/j.bbi.2019.05.031.
  • Hasegawa H, Saiki I. Psychosocial stress augments tumor development through β-adrenergic activation in mice. Jpn J Cancer Res. 2002;93(7):729–735. doi:10.1111/j.1349-7006.2002.tb01313.x.
  • Ma Y, Yang H, Kroemer G. Endogenous and exogenous glucocorticoids abolish the efficacy of immune-dependent cancer therapies. Oncoimmunology. 2020;9(1):1673635. doi:10.1080/2162402X.2019.1673635.
  • Ma Y, Kroemer G. The cancer-immune dialogue in the context of stress. Nat Rev Immunol. 2023. doi:10.1038/s41577-023-00949-8.
  • Huang XY, Wang HC, Yuan Z, Huang J, Zheng Q. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via ß-adrenergic receptor-dependent activation of P38/MAPK pathway. HGE. 2011;59(115–116):889–893. doi:10.5754/hge11476.
  • Bravo-Calderon DM, Assao A, Garcia NG, Coutinho-Camillo CM, Roffe M, Germano JN, Oliveira DT. Beta adrenergic receptor activation inhibits oral cancer migration and invasiveness. Arch Oral Biol. 2020;118:104865. doi:10.1016/j.archoralbio.2020.104865.
  • Shang ZJ, Liu K, Liang DF. Expression of β 2 -adrenergic receptor in oral squamous cell carcinoma. J Oral Pathol Med. 2009;38(4):371–376. doi:10.1111/j.1600-0714.2008.00691.x.
  • Liu X, Wu WK, Yu L, Sung JJ, Srivastava G, Zhang ST, Cho CH. Epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via β-adrenoceptor-dependent transactivation of extracellular signal-regulated kinase/cyclooxygenase-2 pathway. J Cell Biochem. 2008;105(1):53–60. doi:10.1002/jcb.21802.
  • Kwon SY, Chun KJ, Kil HK, Jung N, Shin HA, Jang JY, Choi H, Oh K-H, Kim M-S. β2‑adrenergic receptor expression and the effects of norepinephrine and propranolol on various head and neck cancer subtypes. Oncol Lett. 2021;22(5):804. doi:10.3892/ol.2021.13065.
  • Iseri ÖD, Sahin FI, Terzi YK, Yurtcu E, Erdem SR, Sarialioglu F. Beta-adrenoreceptor antagonists reduce cancer cell proliferation, invasion, and migration. Pharm Biol. 2014;52(11):1374–1381. doi:10.3109/13880209.2014.892513.
  • Masur K, Niggemann B, Zanker KS, Entschladen F. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res. 2001;61:2866–2869.
  • Wilson JM, Lorimer E, Tyburski MD, Williams CL. β-adrenergic receptors suppress Rap1B prenylation and promote the metastatic phenotype in breast cancer cells. Cancer Biol Ther. 2015;16(9):1364–1374. doi:10.1080/15384047.2015.1070988.
  • Strell C, Niggemann B, Voss MJ, Powe DG, Zanker KS, Entschladen F. Norepinephrine promotes the β1-Integrin–Mediated adhesion of MDA-MB-231 cells to vascular endothelium by the induction of a GROα release. Mol Cancer Res. 2012;10(2):197–207. doi:10.1158/1541-7786.MCR-11-0130.
  • Silva D, Kacprzak K, Quintas C, Goncalves J, Fresco P. Activation of β-adrenoceptors promotes lipid droplet accumulation in MCF-7 breast cancer cells via cAMP/PKA/EPAC pathways. IJMS. 2023;24(1):767. doi:10.3390/ijms24010767.
  • Liu Z, Gao Z, Li B, Li J, Ou Y, Yu X, Zhang Z, Liu S, Fu X, Jin H, et al. Lipid-associated macrophages in the tumor-adipose microenvironment facilitate breast cancer progression. Oncoimmunology. 2022;11(1):2085432. doi:10.1080/2162402X.2022.2085432.
  • Askari MD, Tsao MS, Schuller HM. The tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone stimulates proliferation of immortalized human pancreatic duct epithelia through β-adrenergic transactivation of EGF receptors. J Cancer Res Clin Oncol. 2005;131(10):639–648. doi:10.1007/s00432-005-0002-7.
  • Alaskar A, Abdulraqeb Ali A, Hassan S, Shinwari Z, Alaiya A, von Holzen U, Miller L, Kulik G. Inhibition of signaling downstream of beta-2 adrenoceptor by propranolol in prostate cancer cells. The Prostate. 2023;83(3):237–245. doi:10.1002/pros.24455.
  • Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, Ogawa M, Mitsudomi T, Sugiura T, Takahashi T, et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 1998;58(17):3761–3764.
  • Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107(4):1183–1188. doi:10.1016/0016-5085(94)90246-1.
  • Weddle DL, Tithoff P, Williams M, Schuller HM. Beta-adrenergic growth regulation of human cancer cell lines derived from pancreatic ductal carcinomas. Carcinogenesis. 2001;22(3):473–479. doi:10.1093/carcin/22.3.473.
  • Schuller HM. Mechanisms of smoking-related lung and pancreatic adenocarcinoma development. Nat Rev Cancer. 2002;2(6):455–463. doi:10.1038/nrc824.
  • Lin X, Luo K, Lv Z, Huang J. Beta-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice. Hepatogastroenterology. 2012;59(114):584–588. doi:10.5754/hge11271.
  • Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes colon tumor growth and angiogenesis through -adrenergic activation. Toxicol Sci. 2007;97(2):279–287. doi:10.1093/toxsci/kfm060.
  • Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes cell proliferation via α7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells. Toxicol Appl Pharm. 2007;221(3):261–267. doi:10.1016/j.taap.2007.04.002.
  • Fitzpatrick AL, Daling JR, Furberg CD, Kronmal RA, Weissfeld JL. Hypertension, heart rate, use of antihypertensives, and incident prostate cancer. Ann Epidemiol. 2001;11(8):534–542. doi:10.1016/s1047-2797(01)00246-0.
  • Wrobel LJ, Le Gal FA. Inhibition of Human melanoma growth by a non-cardioselective β-blocker. J Invest Dermatol. 2015;135(2):525–531. doi:10.1038/jid.2014.373.
  • Cecilio HP, Valente VB, Pereira KM, Kayahara GM, Furuse C, Biasoli ÉR, Miyahara GI, Oliveira SHP, Bernabé DG. Beta-adrenergic blocker inhibits oral carcinogenesis and reduces tumor invasion. Cancer Chemother Pharmacol. 2020;86(5):681–686. doi:10.1007/s00280-020-04149-2.
  • Albinana V, Recio-Poveda L, Gonzalez-Peramato P, Martinez-Pineiro L, Botella LM, Cuesta AM. Blockade of β2-adrenergic receptor reduces inflammation and oxidative stress in clear cell renal cell carcinoma. IJMS. 2022;23(3):1325. doi:10.3390/ijms23031325.
  • Stiles JM, Amaya C, Rains S, Diaz D, Pham R, Battiste J, Modiano JF, Kokta V, Boucheron LE, Mitchell DC, et al. Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma. PLoS ONE. 2013;8(3):e60021. doi:10.1371/journal.pone.0060021.
  • Duckett MM, Phung SK, Nguyen L, Khammanivong A, Dickerson E, Dusenbery K, Lawrence J. The adrenergic receptor antagonists propranolol and carvedilol decrease bone sarcoma cell viability and sustained carvedilol reduces clonogenic survival and increases radiosensitivity in canine osteosarcoma cells. Vet Comp Oncol. 2020;18(1):128–140. doi:10.1111/vco.12560.
  • Rivero EM, Pinero CP, Gargiulo L, Entschladen F, Zanker K, Bruzzone A, Lüthy IA. The β2-adrenergic agonist salbutamol inhibits migration, invasion and metastasis of the Human breast cancer MDA-MB- 231 cell line. Curr Cancer Drug Targets. 2017;17(8):756–766. doi:10.2174/1568009617666170330151415.
  • Coelho M, Moz M, Correia G, Teixeira A, Medeiros R, Ribeiro L. Antiproliferative effects of β-blockers on human colorectal cancer cells. Oncol Rep. 2015;33(5):2513–2520. doi:10.3892/or.2015.3874.
  • Sakakitani S, Podyma-Inoue KA, Takayama R, Takahashi K, Ishigami-Yuasa M, Kagechika H, Harada H, Watabe T. Activation of β2-adrenergic receptor signals suppresses mesenchymal phenotypes of oral squamous cell carcinoma cells. Cancer Sci. 2021;112(1):155–167. doi:10.1111/cas.14670.
  • Palm D, Lang K, Niggemann B, Drell TL, Masur K, Zaenker KS, Entschladen F. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by β-blockers. Int J Cancer. 2006;118(11):2744–2749. doi:10.1002/ijc.21723.
  • Lee A, Fraser SP, Djamgoz MBA. Propranolol inhibits neonatal Nav1.5 activity and invasiveness of MDA-MB-231 breast cancer cells: effects of combination with ranolazine. J Cell Physiol. 2019;234(12):23066–23081. doi:10.1002/jcp.28868.
  • Hajighasemi F, Hajighasemi S. Effect of propranolol on angiogenic factors in human hematopoietic cell lines in vitro. Iran Biomed J. 2009;13:223–228.
  • Zhang D, Ma QY, Hu HT, Zhang M. β 2 -adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NF-κB and AP-1. Cancer Biol Ther. 2010;10(1):19–29. doi:10.4161/cbt.10.1.11944.
  • Xie WY, He RH, Zhang J, He YJ, Wan Z, Zhou CF, Tang Y, Li Z, Mcleod H, Liu J, et al. β‑blockers inhibit the viability of breast cancer cells by regulating the ERK/COX‑2 signaling pathway and the drug response is affected by ADRB2 single‑nucleotide polymorphisms. Oncol Rep. 2018;41(1):341–350. doi:10.3892/or.2018.6830.
  • Chin CC, Li JM, Lee KF, Huang YC, Wang KC, Lai HC, Cheng C-C, Kuo Y-H, Shi C-S. Selective β2-AR blockage suppresses colorectal cancer growth through regulation of EGFR-Akt/ERK1/2 signaling, G1-phase arrest, and apoptosis. J Cell Physiol. 2016;231(2):459–472. doi:10.1002/jcp.25092.
  • Koh M, Takahashi T, Kurokawa Y, Kobayashi T, Saito T, Ishida T, Serada S, Fujimoto M, Naka T, Wada N, et al. Propranolol suppresses gastric cancer cell growth by regulating proliferation and apoptosis. Gastric Cancer. 2021;24(5):1037–1049. doi:10.1007/s10120-021-01184-7.
  • Zhang X, Zhang Y, He Z, Yin K, Li B, Zhang L, Xu Z. Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2. Cell Death Disease. 2019;10(11):788. doi:10.1038/s41419-019-2030-2.
  • Liao C. The β-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor κB signaling. Oncol Rep. 2010;24(6):1669–1676. doi:10.3892/or_00001032.
  • Wang F, Liu H, Wang F, Xu R, Wang P, Tang F, Zhang X, Zhu Z, Lv H, Han T, et al. Propranolol suppresses the proliferation and induces the apoptosis of liver cancer cells. Mol Med Rep. 2018;17(4):5213–5221. doi:10.3892/mmr.2018.8476.
  • Solerno LM, Sobol NT, Gottardo MF, Capobianco CS, Ferrero MR, Vasquez L, Alonso DF, Garona J. Propranolol blocks osteosarcoma cell cycle progression, inhibits angiogenesis and slows xenograft growth in combination with cisplatin-based chemotherapy. Sci Rep. 2022;12(1):15058. doi:10.1038/s41598-022-18324-3.
  • Zhang D, Ma Q, Wang Z, Zhang M, Guo K, Wang F, Wu E. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway. Mol Cancer. 2011;10(1):146. doi:10.1186/1476-4598-10-146.
  • Cakir Y, Plummer HK 3rd, Tithof PK, Schuller HM. Beta-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int J Oncol. 2002;21(1):153–157. doi:10.3892/ijo.21.1.153.
  • Lu K, Bhat M, Peters S, Mitra R, Oberyszyn T, Basu S. Suppression of beta 2 adrenergic receptor actions prevent UVB mediated cutaneous squamous cell tumorigenesis through inhibition of VEGF-A induced angiogenesis. Mol Carcinog. 2021;60(3):172–178. doi:10.1002/mc.23281.
  • Bustamante P, Miyamoto D, Goyeneche A, de Alba Graue PG, Jin E, Tsering T, Dias AB, Burnier MN, Burnier JV. Beta-blockers exert potent anti-tumor effects in cutaneous and uveal melanoma. Cancer Med. 2019;8(17):7265–7277. doi:10.1002/cam4.2594.
  • Mele L, Del Vecchio V, Marampon F, Regad T, Wagner S, Mosca L, Bimonte S, Giudice A, Liccardo D, Prisco C, et al. β2-AR blockade potentiates MEK1/2 inhibitor effect on HNSCC by regulating the Nrf2-mediated defense mechanism. Cell Death Disease. 2020;11(10):850. doi:10.1038/s41419-020-03056-x.
  • Wu FQ, Fang T, Yu LX, Lv GS, Lv HW, Liang D, Li T, Wang C-Z, Tan Y-X, Ding J, et al. ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J Hepatol. 2016;65(2):314–324. doi:10.1016/j.jhep.2016.04.019.
  • Barathova M, Grossmannova K, Belvoncikova P, Kubasova V, Simko V, Skubla R, Csaderova L, Pastorek J. Impairment of hypoxia-induced CA IX by beta-blocker Propranolol—impact on progression and metastatic potential of colorectal cancer cells. IJMS. 2020;21(22):8760. doi:10.3390/ijms21228760.
  • Kavakcioglu Yardimci B, Geyikoglu F, Aysin F, Koc K, Simsek Ozek N, Kucukatay V. The cytotoxic and apoptotic effects of beta-blockers with different selectivity on cancerous and healthy lung cell lines. Mol Biol Rep. 2021;48(5):4009–4019. doi:10.1007/s11033-021-06409-7.
  • Gong L, Lei Y, Tan X, Dong Y, Luo Z, Zhang D, Han S. Propranolol selectively inhibits cervical cancer cell growth by suppressing the cGMP/PKG pathway. Biomed Pharmacother. 2019;111:1243–1248. doi:10.1016/j.biopha.2019.01.027.
  • Albinana V, Gallardo-Vara E, de Rojas PI, Recio-Poveda L, Aguado T, Canto-Cano A, Aguirre DT, Serra MM, González-Peramato P, Martínez-Piñeiro L, et al. Targeting β2-adrenergic receptors shows therapeutical benefits in clear cell renal cell carcinoma from Von Hippel–Lindau disease. JCM. 2020;9(9):2740. doi:10.3390/jcm9092740.
  • Cheng JS, Huang CC, Chou CT, Jan CR. Mechanisms of carvedilol-induced [Ca2+] i rises and death in human hepatoma cells. Naunyn-Schmiedeberg’s Arch Pharmacol. 2007;376(3):185–194. doi:10.1007/s00210-007-0191-5.
  • Dal Monte M, Casini G, Filippi L, Nicchia GP, Svelto M, Bagnoli P. Functional involvement of β3-adrenergic receptors in melanoma growth and vascularization. J Mol Med. 2013;91(12):1407–1419. doi:10.1007/s00109-013-1073-6.
  • Hsieh YD, Chi CC, Chou CT, Cheng JS, Kuo CC, Liang WZ, Lin K-L, Tseng L-L, Jan C-R. Investigation of carvedilol-evoked Ca 2+ movement and death in human oral cancer cells. J Recept Signal Transduct Res. 2011;31(3):220–228. doi:10.3109/10799893.2011.577785.
  • Zhang D, Ma Q, Shen S, Hu H. Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist’s anticancer effect in pancreatic cancer cell. Pancreas. 2009;38(1):94–100. doi:10.1097/MPA.0b013e318184f50c.
  • Ozler S, Pazarci P. Anti-tumoral effect of beta-blockers on prostate and bladder cancer cells via mitogen-activated protein kinase pathways. Anticancer Drugs. 2022;33(4):384–388. doi:10.1097/CAD.0000000000001271.
  • Sidorova M, Petrikaite V. The effect of beta adrenoreceptor blockers on viability and cell colony formation of non-small cell lung cancer cell lines A549 and H1299. Molecules. 2022;27(6):1938. doi:10.3390/molecules27061938.
  • Bezu L, Sauvat A, Humeau J, Leduc M, Kepp O, Kroemer G. eIf2α phosphorylation: a hallmark of immunogenic cell death. Oncoimmunology. 2018;7(6):e1431089. doi:10.1080/2162402X.2018.1431089.
  • Salvagno C, Mandula JK, Rodriguez PC, Cubillos-Ruiz JR. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer. 2022;8(11):930–943. doi:10.1016/j.trecan.2022.06.006.
  • Kamal Y, Dwan D, Hoehn HJ, Sanz-Pamplona R, Alonso MH, Moreno V, Cheng C, Schell MJ, Kim Y, Felder SI, et al. Tumor immune infiltration estimated from gene expression profiles predicts colorectal cancer relapse. Oncoimmunology. 2021;10(1):1862529. doi:10.1080/2162402X.2020.1862529.
  • Bouaoud J, Foy JP, Tortereau A, Michon L, Lavergne V, Gadot N, Boyault S, Valantin J, De Souza G, Zrounba P, et al. Early changes in the immune microenvironment of oral potentially malignant disorders reveal an unexpected association of M2 macrophages with oral cancer free survival. Oncoimmunology. 2021;10(1):1944554. doi:10.1080/2162402X.2021.1944554.
  • Al-Wadei HA, Al-Wadei MH, Schuller HM. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs. 2009;20(6):477–482. doi:10.1097/CAD.0b013e32832bd1e3.
  • Liao P, Song K, Zhu Z, Liu Z, Zhang W, Li W, Hu J, Hu Q, Chen C, Chen B, et al. Propranolol suppresses the growth of colorectal cancer through simultaneously activating autologous CD8 + T cells and inhibiting tumor AKT/MAPK pathway. Clin Pharmacol Ther. 2020;108(3):606–615. doi:10.1002/cpt.1894.
  • Montoya A, Amaya CN, Belmont A, Diab N, Trevino R, Villanueva G, Rains S, Sanchez LA, Badri N, Otoukesh S, et al. Use of non-selective β-blockers is associated with decreased tumor proliferative indices in early stage breast cancer. Oncotarget. 2017;8(4):6446–6460. doi:10.18632/oncotarget.14119.
  • Zhou C, Chen X, Zeng W, Peng C, Huang G, Li X, Ouyang Z, Luo Y, Xu X, Xu B, et al. Propranolol induced G0/G1/S phase arrest and apoptosis in melanoma cells via AKT/MAPK pathway. Oncotarget. 2016;7(42):68314–68327. doi:10.18632/oncotarget.11599.
  • Li H, Peyser ND, Zeng Y, Ha PK, Johnson DE, Grandis JR. Nsaids overcome PIK3CA mutation-mediated resistance to EGFR inhibition in head and neck cancer preclinical models. Cancers Basel. 2022;14(3):506. doi:10.3390/cancers14030506.
  • Shin VY, Wu WK, Chu KM, Koo MW, Wong HP, Lam EK, Tai EKK, Cho CH. Functional role of -adrenergic receptors in the mitogenic action of nicotine on gastric cancer cells. Toxicol Sci. 2006;96(1):21–29. doi:10.1093/toxsci/kfl118.
  • Jin Z, Gao F, Flagg T, Deng X. Nicotine induces multi-site phosphorylation of bad in association with suppression of apoptosis. J Biol Chem. 2004;279(22):23837–23844. doi:10.1074/jbc.M402566200.
  • Stanojkovic TP, Zizak Z, Mihailovic-Stanojevic N, Petrovic T, Juranic Z. Inhibition of proliferation on some neoplastic cell lines-act of carvedilol and captopril. J Exp Clin Cancer Res. 2005;24:387–395.
  • Liu CP, Jan CR. Effect of carvedilol on Ca2+ movement and cytotoxicity in human MG63 osteosarcoma cells. Basic Clin Pharmacol Toxicol. 2004;95(2):59–65. doi:10.1111/j.1742-7843.2004.950203.x.
  • Dezong G, Zhongbing M, Qinye F, Zhigang Y. Carvedilol suppresses migration and invasion of malignant breast cells by inactivating src involving cAMP/PKA and PKCδ signaling pathway. J Cancer Res Ther. 2014;10(4):991–1003. doi:10.4103/0973-1482.137664.
  • Chang A, Yeung S, Thakkar A, Huang KM, Liu MM, Kanassatega RS, Parsa C, Orlando R, Jackson EK, Andresen BT, et al. Prevention of Skin Carcinogenesis by the β-Blocker Carvedilol. Cancer Prev Res. 2015;8(1):27–36. doi:10.1158/1940-6207.CAPR-14-0193.
  • Sereni F, Dal Monte M, Filippi L, Bagnoli P. Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors. Naunyn-Schmiedeberg’s Arch Pharmacol. 2015;388(12):1317–1331. doi:10.1007/s00210-015-1165-7.
  • Calvani M, Cavallini L, Tondo A, Spinelli V, Ricci L, Pasha A, Bruno G, Buonvicino D, Bigagli E, Vignoli M, et al. β 3-adrenoreceptors control mitochondrial dormancy in melanoma and embryonic stem cells. Oxid Med Cell Longev. 2018;2018:1–10. doi:10.1155/2018/6816508.
  • Bruno G, Cencetti F, Pini A, Tondo A, Cuzzubbo D, Fontani F, Strinna V, Buccoliero AM, Casazza G, Donati C, et al. β3-adrenoreceptor blockade reduces tumor growth and increases neuronal differentiation in neuroblastoma via SK2/S1P2 modulation. Oncogene. 2020;39(2):368–384. doi:10.1038/s41388-019-0993-1.
  • Deng J, Jiang P, Yang T, Huang M, Qi W, Zhou T, Yang Z, Zou Y, Gao G, Yang X, et al. Targeting β3-adrenergic receptor signaling inhibits neuroblastoma cell growth via suppressing the mTOR pathway. Biochem Bioph Res Co. 2019;514(1):295–300. doi:10.1016/j.bbrc.2019.04.099.
  • Chen H, Liu D, Guo L, Cheng X, Guo N, Shi M. Chronic psychological stress promotes lung metastatic colonization of circulating breast cancer cells by decorating a pre-metastatic niche through activating β-adrenergic signaling. J Pathol. 2018;244(1):49–60. doi:10.1002/path.4988.
  • Melamed R, Rosenne E, Shakhar K, Schwartz Y, Abudarham N, Ben-Eliyahu S. Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: suppression by surgery and the prophylactic use of a β-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav Immun. 2005;19(2):114–126. doi:10.1016/j.bbi.2004.07.004.
  • Yonekura S, Terrisse S, Alves Costa Silva C, Lafarge A, Iebba V, Ferrere G, Goubet A-G, Fahrner J-E, Lahmar I, Ueda K, et al. Cancer induces a stress ileopathy depending on β-adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 2022;12(4):1128–1151. doi:10.1158/2159-8290.CD-21-0999.
  • Lamkin DM, Sloan EK, Patel AJ, Chiang BS, Pimentel MA, Ma JC, Arevalo JM, Morizono K, Cole SW. Chronic stress enhances progression of acute lymphoblastic leukemia via β-adrenergic signaling. Brain Behav Immun. 2012;26(4):635–641. doi:10.1016/j.bbi.2012.01.013.
  • Mohammadpour H, MacDonald CR, Qiao G, Chen M, Dong B, Hylander BL, McCarthy PL, Abrams SI, Repasky EA. β2 adrenergic receptor–mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J Clin Invest. 2019;129(12):5537–5552. doi:10.1172/JCI129502.
  • Jean Wrobel L, Bod L, Lengagne R, Kato M, Prevost-Blondel A, Le Gal FA. Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget. 2016;7(47):77825–77837. doi:10.18632/oncotarget.12833.
  • An J, Feng L, Ren J, Li Y, Li G, Liu C, Yao Y, Yao Y, Jiang Z, Gao Y, et al. Chronic stress promotes breast carcinoma metastasis by accumulating myeloid-derived suppressor cells through activating β-adrenergic signaling. Oncoimmunology. 2021;10(1):2004659. doi:10.1080/2162402X.2021.2004659.
  • Kato T, Fukushima H, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Takao S, Choyke PL, Kobayashi H, et al. Selective depletion of polymorphonuclear myeloid derived suppressor cells in tumor beds with near infrared photoimmunotherapy enhances host immune response. Oncoimmunology. 2022;11(1):2152248. doi:10.1080/2162402X.2022.2152248.
  • Tang Y, Zhou C, Li Q, Cheng X, Huang T, Li F, He L, Zhang B, Tu S. Targeting depletion of myeloid-derived suppressor cells potentiates PD-L1 blockade efficacy in gastric and colon cancers. Oncoimmunology. 2022;11(1):2131084. doi:10.1080/2162402X.2022.2131084.
  • Cho H, Kim JE, Hong YS, Kim SY, Kim J, Ryu YM, Kim S-Y, Kim TW. Comprehensive evaluation of the tumor immune microenvironment and its dynamic changes in patients with locally advanced rectal cancer treated with preoperative chemoradiotherapy: from the phase II ADORE study. Oncoimmunology. 2022;11(1):2148374. doi:10.1080/2162402X.2022.2148374.
  • Barnestein R, Galland L, Kalfeist L, Ghiringhelli F, Ladoire S, Limagne E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology. 2022;11(1):2120676. doi:10.1080/2162402X.2022.2120676.
  • Qiao G, Chen M, Mohammadpour H, MacDonald CR, Bucsek MJ, Hylander BL, Barbi JJ, Repasky EA. Chronic adrenergic stress contributes to metabolic dysfunction and an Exhausted phenotype in T cells in the tumor microenvironment. Cancer Immunol Res. 2021;9(6):651–664. doi:10.1158/2326-6066.CIR-20-0445.
  • Bucsek MJ, Qiao G, MacDonald CR, Giridharan T, Evans L, Niedzwecki B, Liu H, Kokolus KM, Eng JWL, Messmer MN, et al. β-adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res. 2017;77(20):5639–5651. doi:10.1158/0008-5472.CAN-17-0546.
  • Calvani M, Bruno G, Dabraio A, Subbiani A, Bianchini F, Fontani F, Casazza G, Vignoli M, De Logu F, Frenos S, et al. β3-adrenoreceptor blockade induces stem cells differentiation in melanoma microenvironment. IJMS. 2020;21(4):1420. doi:10.3390/ijms21041420.
  • Chen M, Qiao G, Hylander BL, Mohammadpour H, Wang XY, Subjeck JR, Singh AK, Repasky EA. Adrenergic stress constrains the development of anti-tumor immunity and abscopal responses following local radiation. Nat Commun. 2020;11(1):1821. doi:10.1038/s41467-020-15676-0.
  • Liao X, Chaudhary P, Qiu G, Che X, Fan L. The role of propranolol as a radiosensitizer in gastric cancer treatment. Drug Des Devel Ther. 2018;12:639–645. doi:10.2147/DDDT.S160865.
  • Liao X, Che X, Zhao W, Zhang D, Long H, Chaudhary P, LI H. Effects of propranolol in combination with radiation on apoptosis and survival of gastric cancer cells in vitro. Radiat Oncol. 2010;5(1):98. doi:10.1186/1748-717X-5-98.
  • Farhoumand LS, Fiorentzis M, Kraemer MM, Sak A, Stuschke M, Rassaf T, Hendgen-Cotta U, Bechrakis NE, Berchner-Pfannschmidt U. The adrenergic receptor antagonist carvedilol elicits anti-tumor responses in uveal melanoma 3D tumor spheroids and May serve as co-adjuvant therapy with radiation. Cancers Basel. 2022;14(13):3097. doi:10.3390/cancers14133097.
  • Pasquier E, Ciccolini J, Carre M, Giacometti S, Fanciullino R, Pouchy C, Montero M-P, Serdjebi C, Kavallaris M, André N, et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget. 2011;2(10):797–809. doi:10.18632/oncotarget.343.
  • Calvani M, Dabraio A, Bruno G, De Gregorio V, Coronnello M, Bogani C, Ciullini S, Marca GL, Vignoli M, Chiarugi P, et al. β3-adrenoreceptor blockade reduces hypoxic myeloid leukemic cells survival and Chemoresistance. IJMS. 2020;21(12):4210. doi:10.3390/ijms21124210.
  • Wolter JK, Wolter NE, Blanch A, Partridge T, Cheng L, Morgenstern DA, Podkowa M, Kaplan DR, Irwin MS. Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget. 2014;5(1):161–172. doi:10.18632/oncotarget.1083.
  • Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, Norris MD, Trahair T, Andre N, Kavallaris M, et al. β-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer. 2013;108(12):2485–2494. doi:10.1038/bjc.2013.205.
  • Shibuya CM, Tjioe KC, Oliveira SHP, Bernabe DG. Propranolol inhibits cell viability and expression of the pro-tumorigenic proteins Akt, NF-ĸB, and VEGF in oral squamous cell carcinoma. Arch Oral Biol. 2022;136:105383. doi:10.1016/j.archoralbio.2022.105383.
  • Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, Maurer HC, Chen X, Jiang Z, Westphalen CB, et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;34(5):863–867. doi:10.1016/j.ccell.2018.10.010.
  • Shan T, Ma Q, Zhang D, Guo K, Liu H, Wang F, Wu E. β2-adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur J Pharmacol. 2011;665(1–3):1–7. doi:10.1016/j.ejphar.2011.04.055.
  • Wei WJ, Shen CT, Song HJ, Qiu ZL, Luo QY. Propranolol sensitizes thyroid cancer cells to cytotoxic effect of vemurafenib. Oncol Rep. 2016;36(3):1576–1584. doi:10.3892/or.2016.4918.
  • Kuang X, Qi M, Peng C, Zhou C, Su J, Zeng W, Liu H, Zhang J, Chen M, Shen M, et al. Propranolol enhanced the anti-tumor effect of sunitinib by inhibiting proliferation and inducing G0/G1/S phase arrest in malignant melanoma. Oncotarget. 2018;9(1):802–811. doi:10.18632/oncotarget.22696.
  • Kokolus KM, Zhang Y, Sivik JM, Schmeck C, Zhu J, Repasky EA, Drabick JJ, Schell TD. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology. 2018;7(3):e1405205. doi:10.1080/2162402X.2017.1405205.
  • Shirinbak S, Chan RY, Shahani S, Muthugounder S, Kennedy R, Hung LT, Fernandez GE, Hadjidaniel MD, Moghimi B, Sheard MA, et al. Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma. Oncoimmunology. 2021;10(1):1838140. doi:10.1080/2162402X.2020.1838140.
  • Carretero-Gonzalez A, Otero I, Lora D, Carril-Ajuria L, Castellano D, de Velasco G. Efficacy and safety of anti-PD-1/PD-L1 combinations versus standard of care in cancer: a systematic review and meta-analysis. Oncoimmunology. 2021;10(1):1878599. doi:10.1080/2162402X.2021.1878599.
  • Smolle MA, Herbsthofer L, Goda M, Granegger B, Brcic I, Bergovec M, Scheipl S, Prietl B, El-Heliebi A, Pichler M, et al. Influence of tumor-infiltrating immune cells on local control rate, distant metastasis, and survival in patients with soft tissue sarcoma. Oncoimmunology. 2021;10(1):1896658. doi:10.1080/2162402X.2021.1896658.
  • Boesch M, Baty F, Albrich WC, Flatz L, Rodriguez R, Rothschild SI, Joerger M, Früh M, Brutsche MH. Local tumor microbial signatures and response to checkpoint blockade in non-small cell lung cancer. Oncoimmunology. 2021;10(1):1988403. doi:10.1080/2162402X.2021.1988403.
  • Goedegebuure RSA, Harrasser M, de Klerk LK, van Schooten TS, van Grieken NCT, Eken M, Grifhorst MS, Pocorni N, Jordanova ES, van Berge Henegouwen MI, et al. Pre-treatment tumor-infiltrating T cells influence response to neoadjuvant chemoradiotherapy in esophageal adenocarcinoma. Oncoimmunology. 2021;10(1):1954807. doi:10.1080/2162402X.2021.1954807.
  • Daher C, Vimeux L, Stoeva R, Peranzoni E, Bismuth G, Wieduwild E, Lucas B, Donnadieu E, Bercovici N, Trautmann A, et al. Blockade of β-adrenergic receptors improves CD8+ T-cell priming and cancer vaccine efficacy. Cancer Immunol Res. 2019;7(11):1849–1863. doi:10.1158/2326-6066.CIR-18-0833.
  • Rico M, Baglioni M, Bondarenko M, Laluce NC, Rozados V, Andre N, Carré M, Scharovsky OG, Márquez MM. Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models. Oncotarget. 2017;8(2):2874–2889. doi:10.18632/oncotarget.13760.
  • Xia W, Qi X, Li M, Wu Y, Sun L, Fan X, Yuan Y, Li J. Metformin promotes anticancer activity of NK cells in a p38 MAPK dependent manner. Oncoimmunology. 2021;10(1):1995999. doi:10.1080/2162402X.2021.1995999.
  • Sorski L, Melamed R, Matzner P, Lavon H, Shaashua L, Rosenne E, Ben-Eliyahu S. Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through β-adrenoceptors blockade and COX2 inhibition. Brain Behav Immun. 2016;58:91–98. doi:10.1016/j.bbi.2016.05.017.
  • Benish M, Bartal I, Goldfarb Y, Levi B, Avraham R, Raz A, Ben-Eliyahu S. Perioperative use of β-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol. 2008;15(7):2042–2052. doi:10.1245/s10434-008-9890-5.
  • Glasner A, Avraham R, Rosenne E, Benish M, Zmora O, Shemer S, Meiboom H, Ben-Eliyahu S. Improving survival rates in two models of spontaneous Postoperative metastasis in mice by Combined administration of a β-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol. 2010;184(5):2449–2457. doi:10.4049/jimmunol.0903301.
  • Brohee L, Peulen O, Nusgens B, Castronovo V, Thiry M, Colige AC, Deroanne CF. Propranolol sensitizes prostate cancer cells to glucose metabolism inhibition and prevents cancer progression. Sci Rep. 2018;8(1):7050. doi:10.1038/s41598-018-25340-9.
  • Nanda A, Ahmed O, Bir S, Bollam P, Kalakoti P. Elucidating the role of incidental use of beta-blockers in patients with metastatic brain tumors in controlling tumor progression and survivability. Neurol India. 2015;63(1):19–23. doi:10.4103/0028-3886.152625.
  • Spera G, Fresco R, Fung H, Dyck JRB, Pituskin E, Paterson I, Mackey JR. Beta blockers and improved progression-free survival in patients with advanced HER2 negative breast cancer: a retrospective analysis of the ROSE/TRIO-012 study. Ann Oncol : Off J Eur Soc Medi Oncol. 2017;28(8):1836–1841. doi:10.1093/annonc/mdx264.
  • Powe DG, Voss MJ, Zanker KS, Habashy HO, Green AR, Ellis IO, Entschladen F. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget. 2010;1(7):628–638. doi:10.18632/oncotarget.197.
  • Hicks BM, Murray LJ, Powe DG, Hughes CM, Cardwell CR. β-blocker usage and colorectal cancer mortality: a nested case–control study in the UK clinical practice research Datalink cohort. Ann Oncol : Off J Eur Soc Medi Oncol. 2013;24(12):3100–3106. doi:10.1093/annonc/mdt381.
  • He X, Zhao Z, Jiang X, Sun Y. Non-selective beta-blockers and the incidence of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Front Pharmacol. 2023;14:1216059. doi:10.3389/fphar.2023.1216059.
  • Wang HM, Liao ZX, Komaki R, Welsh JW, O’Reilly MS, Chang JY, Zhuang Y, Levy LB, Lu C, Gomez DR, et al. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol : Off J Eur Soc Medi Oncol. 2013;24(5):1312–1319. doi:10.1093/annonc/mds616.
  • De Giorgi V, Grazzini M, Gandini S, Benemei S, Lotti T, Marchionni N, Geppetti P. Treatment with β-blockers and reduced disease progression in patients with thick melanoma. Arch Intern Med. 2011;171(8):779–781. doi:10.1001/archinternmed.2011.131.
  • Spilsbury K, Tuesley KM, Pearson SA, Coory MD, Donovan P, Steer CB, Stewart LM, Pandeya N, Jordan SJ. Perioperative beta-blocker supply and survival in women with epithelial ovarian cancer and a history of cardiovascular Conditions. J Clin Oncol. 2023;41(2):266–275. doi:10.1200/JCO.22.00097.
  • Al-Niaimi A, Dickson EL, Albertin C, Karnowski J, Niemi C, Spencer R, Shahzad MMK, Uppal S, Saha S, Rice L, et al. The impact of perioperative β blocker use on patient outcomes after primary cytoreductive surgery in high-grade epithelial ovarian carcinoma. Gynecol Oncol. 2016;143(3):521–525. doi:10.1016/j.ygyno.2016.09.019.
  • Sivanesan S, Tasken KA, Grytli HH. Association of β-blocker use at time of Radical prostatectomy with rate of treatment for prostate cancer recurrence. JAMA Netw Open. 2022;5(1):e2145230. doi:10.1001/jamanetworkopen.2021.45230.
  • Monami M, Filippi L, Ungar A, Sgrilli F, Antenore A, Dicembrini I, Bagnoli P, Marchionni N, Rotella CM, Mannucci E, et al. Further data on beta-blockers and cancer risk: observational study and meta-analysis of randomized clinical trials. Curr Med Res Opin. 2013;29(4):369–378. doi:10.1185/03007995.2013.772505.
  • Zhong S, Yu D, Zhang X, Chen X, Yang S, Tang J, Zhao J, Wang S. β-blocker use and mortality in cancer patients: systematic review and meta-analysis of observational studies. Eur J Cance Prev. 2016;25(5):440–448. doi:10.1097/CEJ.0000000000000192.
  • Yan X, Liu P, Li D, Hu R, Tao M, Zhu S, Wu W, Yang M, Qu X. Novel evidence for the prognostic impact of β-blockers in solid cancer patients receiving immune checkpoint inhibitors. Int Immunopharmacol. 2022;113(Pt A):109383. doi:10.1016/j.intimp.2022.109383.
  • Heitz F, du Bois A, Harter P, Lubbe D, Kurzeder C, Vergote I, Plante M, Pfisterer J. Impact of beta blocker medication in patients with platinum sensitive recurrent ovarian cancer—a combined analysis of 2 prospective multicenter trials by the AGO study group, NCIC-CTG and EORTC-GCG. Gynecol Oncol. 2013;129(3):463–466. doi:10.1016/j.ygyno.2013.03.007.
  • Kennedy OJ, Kicinski M, Valpione S, Gandini S, Suciu S, Blank CU, Long GV, Atkinson VG, Dalle S, Haydon AM, et al. Prognostic and predictive value of β-blockers in the EORTC 1325/KEYNOTE-054 phase III trial of pembrolizumab versus placebo in resected high-risk stage III melanoma. Eur J Cancer. 2022;165:97–112. doi:10.1016/j.ejca.2022.01.017.
  • Hsieh HH, Wu TY, Chen CH, Kuo YH, Hour MJ. Survival outcomes of beta-blocker usage in HER2-positive advanced breast cancer patients: a retrospective cohort study. Ther Adv Drug Saf. 2023;14:20420986231181338. doi:10.1177/20420986231181338.
  • Knight JM, Kerswill SA, Hari P, Cole SW, Logan BR, D’Souza A, Shah NN, Horowitz MM, Stolley MR, Sloan EK, et al. Repurposing existing medications as cancer therapy: design and feasibility of a randomized pilot investigating propranolol administration in patients receiving hematopoietic cell transplantation. BMC Cancer. 2018;18(1):593. doi:10.1186/s12885-018-4509-0.
  • Ramondetta LM, Hu W, Thaker PH, Urbauer DL, Chisholm GB, Westin SN, Sun Y, Ramirez PT, Fleming N, Sahai SK, et al. Prospective pilot trial with combination of propranolol with chemotherapy in patients with epithelial ovarian cancer and evaluation on circulating immune cell gene expression. Gynecol Oncol. 2019;154(3):524–530. doi:10.1016/j.ygyno.2019.07.004.
  • Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM, Pang JMB, Henderson MA, Nightingale SS, Ho KM, Myles PS, et al. Preoperative β-blockade with Propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin Cancer Res. 2020;26(8):1803–1811. doi:10.1158/1078-0432.CCR-19-2641.
  • De Giorgi V, Grazzini M, Benemei S, Marchionni N, Botteri E, Pennacchioli E, Geppetti P, Gandini S. Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol. 2018;4(2):e172908. doi:10.1001/jamaoncol.2017.2908.
  • Hopson MB, Lee S, Accordino M, Trivedi M, Maurer M, Crew KD, Hershman DL, Kalinsky K. Phase II study of propranolol feasibility with neoadjuvant chemotherapy in patients with newly diagnosed breast cancer. Breast Cancer Res Treat. 2021;188(2):427–432. doi:10.1007/s10549-021-06210-x.
  • Gandhi S, Pandey MR, Attwood K, Ji W, Witkiewicz AK, Knudsen ES, Allen C, Tario JD, Wallace PK, Cedeno CD, et al. Phase I clinical trial of combination Propranolol and pembrolizumab in locally advanced and metastatic melanoma: safety, tolerability, and preliminary evidence of antitumor activity. Clin Cancer Res. 2021;27(1):87–95. doi:10.1158/1078-0432.CCR-20-2381.
  • Shaashua L, Shabat-Simon M, Haldar R, Matzner P, Zmora O, Shabtai M, Sharon E, Allweis T, Barshack I, Hayman L, et al. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin Cancer Res. 2017;23(16):4651–4661. doi:10.1158/1078-0432.CCR-17-0152.
  • Zhou L, Li Y, Li X, Chen G, Liang H, Wu Y, Tong J, Ouyang W. Propranolol attenuates surgical stress–induced Elevation of the regulatory T cell response in patients undergoing radical mastectomy. J Immunol. 2016;196(8):3460–3469. doi:10.4049/jimmunol.1501677.
  • Haldar R, Ricon-Becker I, Radin A, Gutman M, Cole SW, Zmora O, Ben‐Eliyahu S. Perioperative COX2 and β-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: a randomized controlled trial. Cancer. 2020;126(17):3991–4001. doi:10.1002/cncr.32950.
  • Bertucci F, Boudin L, Finetti P, Van Berckelaer C, Van Dam P, Dirix L, Viens P, Gonçalves A, Ueno NT, Van Laere S, et al. Immune landscape of inflammatory breast cancer suggests vulnerability to immune checkpoint inhibitors. Oncoimmunology. 2021;10(1):1929724. doi:10.1080/2162402X.2021.1929724.
  • Matarrese P, Maccari S, Ascione B, Vona R, Vezzi V, Stati T, Grò MC, Marano G, Ambrosio C, Molinari P. Crosstalk between β2- and α2-adrenergic receptors in the regulation of B16F10 melanoma cell proliferation. IJMS. 2022;23(9):4634. doi:10.3390/ijms23094634.
  • Khabbazi S, Hassanshahi M, Hassanshahi A, Peymanfar Y, Su YW, Xian CJ. Opioids and matrix metalloproteinases: the influence of morphine on MMP-9 production and cancer progression. Naunyn-Schmiedeberg’s Arch Pharmacol. 2019;392(2):123–133. doi:10.1007/s00210-019-01613-6.
  • Liu Z, Cheng S, Fu G, Ji F, Wang C, Cao M. Postoperative administration of ketorolac averts morphine-induced angiogenesis and metastasis in triple-negative breast cancer. Life Sci. 2020;251:117604. doi:10.1016/j.lfs.2020.117604.
  • Liu S, Qin Z, Mao Y, Zhang W, Wang Y, Jia L, Peng X. Therapeutic Targeting of MYC in head and neck squamous cell carcinoma. Oncoimmunology. 2022;11(1):2130583. doi:10.1080/2162402X.2022.2130583.
  • Desmedt C, Demicheli R, Fornili M, Bachir I, Duca M, Viglietti G, Berlière M, Piccart M, Sotiriou C, Sosnowski M, et al. Potential Benefit of Intra-operative administration of ketorolac on breast cancer recurrence according to the patient’s body Mass index. JNCI J Nat Cancer Inst. 2018;110(10):1115–1122. doi:10.1093/jnci/djy042.
  • Forget P, Vandenhende J, Berliere M, Machiels JP, Nussbaum B, Legrand C, De Kock M. Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis. Anesth Analg. 2010;110(6):1630–1635. doi:10.1213/ANE.0b013e3181d2ad07.
  • Forget P, Bentin C, Machiels JP, Berliere M, Coulie PG, De Kock M. Intraoperative use of ketorolac or diclofenac is associated with improved disease-free survival and overall survival in conservative breast cancer surgery. British Journal Of Anaesthesia. 2014;113(Suppl 1):i82–7. doi:10.1093/bja/aet464.
  • Sebastian NT, Stokes WA, Behera M, Jiang R, Gutman DA, Huang Z, Burns A, Sukhatme V, Lowe MC, Ramalingam SS, et al. The Association of improved overall survival with NSAIDs in non–small cell lung cancer patients receiving immune checkpoint inhibitors. Clin Lung Cancer. 2023;24(3):287–294. doi:10.1016/j.cllc.2022.12.013.
  • Sonawane V, Ghosalkar J, Achrekar S, Joshi K. Ketorolac modulates Rac-1/HIF-1alpha/DDX3/beta-catenin signalling via a tumor suppressor prostate apoptosis response-4 (Par-4) in renal cell carcinoma. Sci Rep. 2023;13(1):5659. doi:10.1038/s41598-023-32627-z.
  • Carli F, Webster J, Pearson M, Pearson J, Bartlett S, Bannister P, HALLIDAY D. Protein metabolism after abdominal surgery: effect of 24-h extradural block with local anaesthetic. Br J Anaesth. 1991;67(6):729–734. doi:10.1093/bja/67.6.729.
  • Creed SJ, Le CP, Hassan M, Pon CK, Albold S, Chan KT, Berginski ME, Huang Z, Bear JE, Lane JR, et al. β2-adrenoceptor signaling regulates invadopodia formation to enhance tumor cell invasion. Breast Cancer Res. 2015;17(1):145. doi:10.1186/s13058-015-0655-3.
  • Kang F, Ma W, Ma X, Shao Y, Yang W, Chen X, Li L, Wang J. Propranolol inhibits glucose metabolism and 18F-FDG uptake of breast cancer through posttranscriptional downregulation of hexokinase-2. J Nucl Med. 2014;55(3):439–445. doi:10.2967/jnumed.113.121327.
  • Plummer HK 3rd, Yu Q, Cakir Y, Schuller HM. Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines. BMC Cancer. 2004;4(1):93. doi:10.1186/1471-2407-4-93.
  • Shi M, Yang Z, Hu M, Liu D, Hu Y, Qian L, Zhang W, Chen H, Guo L, Yu M, et al. Catecholamine-induced β2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression. J Immunol. 2013;190(11):5600–5608. doi:10.4049/jimmunol.1202364.
  • Lung HL, Shan SW, Tsang D, Leung KN. Tumor necrosis factor-α mediates the proliferation of rat C6 glioma cells via β-adrenergic receptors. J Neuroimmunol. 2005;166(1–2):102–112. doi:10.1016/j.jneuroim.2005.05.011.
  • Cao M, Huang W, Chen Y, Li G, Liu N, Wu Y, Wang G, Li Q, Kong D, Xue T, et al. Chronic restraint stress promotes the mobilization and recruitment of myeloid-derived suppressor cells through β-adrenergic-activated CXCL5-CXCR2-erk signaling cascades. Intl Journal Of Cancer. 2021;149(2):460–472. doi:10.1002/ijc.33552.
  • Balaha M, Kandeel S, Barakat W. Carvedilol suppresses circulating and hepatic IL-6 responsible for hepatocarcinogenesis of chronically damaged liver in rats. Toxicol Appl Pharm. 2016;311:1–11. doi:10.1016/j.taap.2016.10.012.
  • Satilmis H, Verheye E, Vlummens P, Oudaert I, Vandewalle N, Fan R, Knight JM, De Beule N, Ates G, Massie A, et al. Targeting the β 2 -adrenergic receptor increases chemosensitivity in multiple myeloma by induction of apoptosis and modulating cancer cell metabolism. J Pathol. 2023;259(1):69–80. doi:10.1002/path.6020.
  • Hassan S, Karpova Y, Baiz D, Yancey D, Pullikuth A, Flores A, Register T, Cline JM, D’Agostino R, Danial N, et al. Behavioral stress accelerates prostate cancer development in mice. J Clin Invest. 2013;123(2):874–886. doi:10.1172/JCI63324.
  • Raimondi S, Botteri E, Munzone E, Cipolla C, Rotmensz N, DeCensi A, Gandini S. Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: systematic review and meta-analysis. Intl Journal Of Cancer. 2016;139(1):212–219. doi:10.1002/ijc.30062.
  • Thiele M, Albillos A, Abazi R, Wiest R, Gluud LL, Krag A. Non-selective beta-blockers may reduce risk of hepatocellular carcinoma: a meta-analysis of randomized trials. Liver Int. 2015;35(8):2009–2016. doi:10.1111/liv.12782.
  • Sakamoto A, Yagi K, Okamura T, Harada T, Usuda J. Perioperative administration of an intravenous beta-blocker landiolol hydrochloride in patients with lung cancer: a Japanese Retrospective exploratory clinical study. Sci Rep. 2019;9(1):5217. doi:10.1038/s41598-019-41520-7.
  • Zhang Y, Chen H, Chen S, Li Z, Chen J, Li W. The effect of concomitant use of statins, NSAIDs, low-dose aspirin, metformin and beta-blockers on outcomes in patients receiving immune checkpoint inhibitors: a systematic review and meta-analysis. Oncoimmunology. 2021;10(1):1957605. doi:10.1080/2162402X.2021.1957605.