80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sodium sulfate and magnesium sulfate resistances of mortar with multi-binder systems of calcined kaolinite clay, fly ash, and limestone powder

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Tangtermsirikul S. Durability and mix design of concrete. Thailand: Printing House of Thammasat University; 2003.
  • Skalny J, Marcha J, Odler I. Sulfate attack on concrete. United Kingdom: St Edmundsbury Press; 2002.
  • Krammart P, Tangtermsirikul S. Expansion, strength reduction and weight loss of fly ash concrete in sulphate solution. ASEAN J Sci Technol Dev. 2004;21:373–390.
  • Sirisawat I, Saengsoy W, Baingam L, et al. Durability and testing of mortar with interground fly ash and limestone cement in sulfate solutions. Constr Build Mater. 2014;64:39–46. doi: 10.1016/j.conbuildmat.2014.04.083.
  • Chen F, Gao J, Qi B, et al. Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Constr Build Mater. 2017;154:849–856. doi: 10.1016/j.conbuildmat.2017.08.017.
  • Shi Z, Ferreiro S, Lothenbach B, et al. Sulfate resistance of calcined clay–limestone–Portland cements. Cem Concr Res. 2019;116:238–251. doi: 10.1016/j.cemconres.2018.11.003.
  • Nguyen TBT, Saengsoy W, Tangtermsirikul S. Effect of initial moisture of wet fly ash on workability and compressive strength of mortar and concrete. Constr Build Mater. 2018;183:408–416. doi: 10.1016/j.conbuildmat.2018.06.192.
  • Kaewmanee K, Krammart P, Sumranwanich T, et al. Effect of free lime content on properties of cement-fly ash mixtures. Constr Build Mater. 2013;38:829–836. doi: 10.1016/j.conbuildmat.2012.09.035.
  • Wanna S, Saengsoy W, Toochinda P, et al. Effects of sand powder on sulfuric acid resistance, compressive strength, cost benefits, and CO2 reduction of high CaO fly ash concrete. Adv Mater Sci Eng. 2020;2020:1–12. doi: 10.1155/2020/3284975.
  • Scrivener K, Martirena F, Bishnoi S, et al. Calcined clay limestone cement (LC3). Cem Concr Res. 2018;114:49–56. doi: 10.1016/j.cemconres.2017.08.017.
  • Hollanders S, Adriaens R, Skibsted J, et al. Pozzolanic reactivity of pure calcined clays. Appl Clay Sci. 2016;132–133:552–560. doi: 10.1016/j.clay.2016.08.003.
  • Sharma M, Bishnoi S, Martirena F, et al. Limestone calcined clay cement and concrete: a state-of-the-art review. Cem Concr Res. 2021;149:106564. doi: 10.1016/j.cemconres.2021.106564.
  • Zunino F, Dhandapani Y, Haha MB, et al. Hydration and mixture design of calcined clay blended cement: review by the RILEM TC 282-CCL. Mater Struct. 2022;55(9):234. doi: 10.1617/s11527-022-02060-1.
  • Avet F, Scrivener K. Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement (LC3). Cem Concr Res. 2018;107:124–135. doi: 10.1016/j.cemconres.2018.02.016.
  • Dhandapani Y, Sakthivel T, Santhanam M, et al. Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3). Cem Concr Res. 2018;107:136–151. doi: 10.1016/j.cemconres.2018.02.005.
  • Ferreiro S, Herfort D, Damtoft JS. Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay–limestone Portland cements. Cem Concr Res. 2017;101:1–12. doi: 10.1016/j.cemconres.2017.08.003.
  • Wasuwanich P, Kuentag C. Clay deposits of Thailand. Proceedings of Geology and Mineral Resources of Thailand; 1983 Nov 19–28; Bangkok, Thailand. Department of Mineral Resources: Thailand; 1983. p. 220–225.
  • Sudswong C, Saengsoy W, Sinthupinyo S, et al. Study on properties of mortars and concretes containing calcined clay in combination with fly ash and limestone powder. Proceedings of the 3rd ACF Symposium 2019 Assessment and Intervention of Existing Structures; 2019 Sep 10–11; Sapporo, Japan. Asian Concrete Federation, Japan Concrete Institute, Faculty of Engineering, Hokkaido University: Japan; 2019. pp. S1-2-3.
  • Kijjanon A, Sumranwanich T, Saengsoy W, et al. Chloride penetration resistance, electrical resistivity, and compressive strength of binary and ternary binder concrete with calcined kaolinite clay, fly ash and limestone powder. J Mater Civ Eng. 2023;35(3):04022462. doi: 10.1061/(asce)mt.1943-5533.0004643.
  • Hou W, Liu J, Liu Z, et al. Calcium transfer process of cement paste for ettringite formation under different sulfate concentrations. Constr Build Mater. 2022;384:128706. doi: 10.1016/j.conbuildmat.2022.128706.
  • ASTM C150. Standard specification for Portland cement, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA., 2007.
  • TIS 15-2555. Portland cement part 1 specification. Thai Industrial Standard, Bangkok, Thailand, 2012. (in Thai).
  • ASTM C618. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, Annaul Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A., 2019.
  • TIS 2135-2545. Coal fly ash for use as an admixture in concrete, Thai Industrial Standard, Bangkok, Thailand, 2002. (in Thai); 2002.
  • Chen Y, Zhang Y, He S, et al. Rheology control of limestone calcined clay cement pastes by modifying the content of fine-grained metakaolin. J Sustain Cement Based Mater. 2023;12(9):1126–1140. doi: 10.1080/21650373.2023.2169965.
  • Sui H, Hou P, Liu Y, et al. Limestone calcined clay cement: mechanical properties, crystallography, and microstructure development. J Sustain Cement Based Mater. 2022;12(4):427–440. doi: 10.1080/21650373.2022.2074911.
  • BS 1881-116. Method for determination of compressive strength of concrete cubes, British Standards Institution, London, United Kingdom, 1983.
  • ASTM C109/C 109M. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). Annual book of ASTM standards, American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A., 2007.
  • ASTM C1012. Standard test method for length change of hydraulic-cement mortars exposed to a sulfate solution, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A. 2004.
  • ASTM C490. Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar and concrete. Annual book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A., 2007.
  • ASTM C267. Standard test method for chemical resistance of mortars, grouts, and monolithic surfacings and polymer concrete. Annual book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A., 2020.
  • Ayati B, Newport D, Wong H, et al. Low-carbon cements: potential for low-grade calcined clays to form supplementary cementitious materials. Clean Mater. 2022;5:100099. doi: 10.1016/j.clema.2022.100099.
  • Krishnan S, Emmanuel AC, Bishnoi S. Hydration and phase assemblage of ternary cements with calcined clay and limestone. Constr Build Mater. 2019;222:64–72. doi: 10.1016/j.conbuildmat.2019.06.123.
  • Dhandapani Y, Santhanam M. Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cem Conc Compos. 2017;84:36–47. doi: 10.1016/j.cemconcomp.2017.08.012.
  • Mindess S, Young JF, Darwin D. Concrete. New Jersey: Prentice-Hall; 2002.
  • Hooton RD. Concrete and durability and sustainability as influenced by resistance to fluid ingress and selection of cementitious materials. Proceeding of the 6th International Conference on Concrete under Severe Conditions (CONSEC'10); 2010 Jun 7–9; Merida Yucatan, Mexico. Pedro Castro-Borges: CRC Press, Boca Raton, Florida, United States; pp. 99–114.
  • Cordoba G, Sposito R, Köberl M, et al. Chloride migration and long-term natural carbonation on concrete with calcined clays: a study of calcined clays in Argentina. Case Stud Constr Mater. 2022;17:e01190. doi: 10.1016/j.cscm.2022.e01190.
  • Yang Y, Zhang Y, Zhang W, et al. Study on sulfate resistance of concrete with initial damage under drying–wetting cycles. J Sustain Cement Based Mater. 2018;7(5):311–322. doi: 10.1080/21650373.2018.1499564.
  • Menéndez E, García-Rovés R, Aldea B, et al. Combination of immersion and semi-immersion tests to evaluate concretes manufactured with sulfate-resisting cements. J Sustain Cement Based Mater. 2019;8(6):337–352. doi: 10.1080/21650373.2019.1624659.
  • Lothenbach B, Bary B, Bescop PL, et al. Sulfate ingress in Portland cement. Cem Concr Res. 2010;40(8):1211–1225. doi: 10.1016/j.cemconres.2010.04.004.
  • Nguyen TBT, Chatchawan R, Saengsoy W, et al. Influences of different types of fly ash and confinement on performances of expansive mortars and concretes. Constr Build Mater. 2019;209:176–186. doi: 10.1016/j.conbuildmat.2019.03.032.
  • Bizzozero J, Scrivener KL. Limestone reaction in calcium aluminate cement–calcium sulfate systems. Cem Concr Res. 2015;76:159–169. doi: 10.1016/j.cemconres.2015.05.019.
  • Yu C, Li Z, Liu J. Degradation of limestone calcined clay cement (LC3) mortars under sulfate attack. Low Carbon Mater Green Constr. 2023;1(1):4. doi: 10.1007/s44242-022-00003-1.
  • Li C, Li J, Ren Q, et al. Degradation mechanism of blended cement pastes in sulfate-bearing environments under applied electric field: sulfate attack vs. decalcification. Compos B. 2022;246(110255):110255. doi: 10.1016/j.compositesb.2022.110255.
  • Zunino F, Scrivener K. The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties. Cem Concr Res. 2021;140:106307. doi: 10.1016/j.cemconres.2020.106307.
  • Liu S, Yan P. Effect of limestone powder on microstructure of concrete. J Wuhan Univ Technol Mater Sci Ed. 2010;25(2):328–331. doi: 10.1007/s11595-010-2328-5.
  • Aye T, Oguchi CT. Resistance of plain and blended cement mortars exposed to severe sulfate attacks. Constr Build Mater. 2011;25(6):2988–2996. doi: 10.1016/j.conbuildmat.2010.11.106.
  • Zhang G, Wu C, Hou D, et al. Effect of environmental pH values on phase composition and microstructure of Portland cement paste under sulfate attack. Compos B. 2021;216:108862. doi: 10.1016/j.compositesb.2021.108862.
  • Cao Y, Wang Y, Zhang Z, et al. Recent progress of utilization of activated kaolinitic clay in cementitious construction materials. Compos B. 2021;211:108636. doi: 10.1016/j.compositesb.2021.108636.
  • Feng P, Miao C, Bullard JW. Factors influencing the stability of AFm and AFt in the Ca–Al–S–O–H system at 25 °C. J Am Ceram Soc. 2015;99(3):1031–1041. doi: 10.1111/jace.13971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.