69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The alkali–silica reaction of seawater-mixed mortar

, &

References

  • Xiao J, Qiang C, Nanni A, et al. Use of sea-sand and seawater in concrete construction: current status and future opportunities. Constr Build Mater. 2017;155:1101–1111. doi: 10.1016/j.conbuildmat.2017.08.130.
  • Ahmed A, Guo S, Zhang Z, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete. Constr Build Mater. 2020;256:119484. doi: 10.1016/j.conbuildmat.2020.119484.
  • Li P, Li W, Sun Z, et al. Development of sustainable concrete incorporating seawater: a critical review on cement hydration, microstructure and mechanical strength. Cem Concr Compos. 2021;121:104100. doi: 10.1016/j.cemconcomp.2021.104100.
  • Mohammed TU, Hamada H, Yamaji T. Performance of seawater-mixed concrete in the tidal environment. Cem Concr Res. 2004;34(4):593–601. doi: 10.1016/j.cemconres.2003.09.020.
  • Etxeberria M, Fernandez JM, Limeira J. Secondary aggregates and seawater employment for sustainable concrete dyke blocks production: case study. Constr Build Mater. 2016;113:586–595. doi: 10.1016/j.conbuildmat.2016.03.097.
  • Li H, Farzadnia N, Shi C. The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration. Constr Build Mater. 2018;185:508–518. doi: 10.1016/j.conbuildmat.2018.07.091.
  • Zhao Y, Hu X, Shi C, et al. A review on seawater sea-sand concrete: mixture proportion, hydration, microstructure and properties. Constr Build Mater. 2021;295:123602. doi: 10.1016/j.conbuildmat.2021.123602.
  • Yi Y, Zhu D, Guo S, et al. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment. Cem Concr Compos. 2020;113:103695. doi: 10.1016/j.cemconcomp.2020.103695.
  • BS EN 1008, Mixing water for concrete. Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete London: British Standards Institution; 2002.
  • Rajabipour F, Giannini E, Dunant C, et al. Alkali–silica reaction: current understanding of the reaction mechanisms and the knowledge gaps. Cem Concr Res. 2015;76:130–146. doi: 10.1016/j.cemconres.2015.05.024.
  • Ponce JM, Batic OR. Different manifestations of the alkali–silica reaction in concrete according to the reaction kinetics of the reactive aggregate. Cem Concr Res. 2006;36(6):1148–1156. doi: 10.1016/j.cemconres.2005.12.022.
  • Tänzer R, Jin Y, Stephan D. Effect of the inherent alkalis of alkali activated slag on the risk of alkali silica reaction. Cem Concr Res. 2017;98:82–90. doi: 10.1016/j.cemconres.2017.04.009.
  • Leemann A, Le Saout G, Winnefeld F, et al. Alkali–silica reaction: the influence of calcium on silica dissolution and the formation of reaction products. J Am Ceram Soc. 2011;94(4):1243–1249. doi: 10.1111/j.1551-2916.2010.04202.x.
  • Kim T, Olek J, Jeong H. Alkali–silica reaction: kinetics of chemistry of pore solution and calcium hydroxide content in cementitious system. Cem Concr Res. 2015;71:36–45. doi: 10.1016/j.cemconres.2015.01.017.
  • Chatterji S, Thaulow N, Jensen AD. Studies of alkali–silica reaction. Part 4. Effect of different alkali salt solutions on expansion. Cem Concr Res. 1987;17(5):777–783. doi: 10.1016/0008-8846(87)90040-8.
  • Kawamura M, Takeuchi K. Alkali–silica reaction and pore solution composition in mortars in sea water. Cem Concr Res. 1996;26(12):1809–1819. doi: 10.1016/S0008-8846(96)00178-0.
  • Adiwijaya A. A fundamental study on seawater-mixed concrete related to strength, carbonation and alkali silica reaction. Kyushu University, Fukuoka, Japan; 2015.
  • Shayan A, Xu A, Chirgwin G, et al. Effects of seawater on AAR expansion of concrete. Cem Concr Res. 2010;40(4):563–568. doi: 10.1016/j.cemconres.2009.09.008.
  • Bérubé MA, Dorion JF, Duchesne J, et al. Laboratory and field investigations of the influence of sodium chloride on alkali–silica reactivity. Cem Concr Res. 2003;33(1):77–84. doi: 10.1016/S0008-8846(02)00926-2.
  • Saccani A, Bonora V, Monari P. Laboratory short-term evaluation of ASR: a contribution. Cem Concr Res. 2001;31(5):739–742. doi: 10.1016/S0008-8846(01)00477-X.
  • Nixon PJ, Page CL, Canham I, et al. Influence of sodium chloride on alkali–silica reaction. Adv Cem Res. 1988;1(2):99–106. doi: 10.1680/adcr.1988.1.2.99.
  • Zhang Y, Zhang Q, Xue C, et al. Influence of seawater concentration on alkali–silica reaction of seawater sea-sand concrete: mimicking through NaCl solution and recycled glass aggregate. Constr Build Mater. 2023;394:132110. doi: 10.1016/j.conbuildmat.2023.132110.
  • Wu W, Wang T, Gong Q, et al. Characteristics of the alkali–silica reaction in seawater and sea sand concrete with different water-cement ratios. Constr Build Mater. 2023;400:132822. doi: 10.1016/j.conbuildmat.2023.132822.
  • Wang D, Gong Q, Luo S, et al. Effects of desalinated sea sand on the alkali–silica reaction of seawater and sea sand concrete. Mag Concr Res. 2023;76(7):366–374. doi: 10.1680/jmacr.22.00202.
  • Zhao Y, Gao Y, Chen G, et al. Development of low-carbon materials from GGBS and clay brick powder for 3D concrete printing. Constr Build Mater. 2023;383:131232. doi: 10.1016/j.conbuildmat.2023.131232.
  • ASTM Designation C1260. Standard test method for potential alkali reactivity of aggregates (mortar-bar method). West Conshohocken (PA): ASTM International; 2014.
  • Du H, Tan KH. Use of waste glass as sand in mortar: part II – alkali–silica reaction and mitigation methods. Cem Concr Compos. 2013;35(1):118–126. doi: 10.1016/j.cemconcomp.2012.08.029.
  • ASTM Designation C1567. Test method for determining the potential alkali–silica reactivity of combinations of cementitious materials and aggregate (accelerated mortar-bar method).West Conshohocken (PA): ASTM International; 2013.
  • ASTM Designation C227. Standard test method for potential alkali reactivity of cement-aggregate combinations (mortar-bar method). West Conshohocken (PA): ASTM International; 2010.
  • Shayan A, Xu A. Value-added utilisation of waste glass in concrete. Cem Concr Res. 2004;34(1):81–89. doi: 10.1016/S0008-8846(03)00251-5.
  • Warner SJ. The role of alumina in the mitigation of alkali–silica reaction. Oregon State University, Corvallis, Oregon; 2012.
  • ACI Committee 201. Guide to durable concrete. Farmington Hills (MI): American Concrete Institute; 2008.
  • Yang S, Lu JX, Poon CS. Recycling of waste glass in dry-mixed concrete blocks: evaluation of alkali–silica reaction (ASR) by accelerated laboratory tests and long-term field monitoring. Constr Build Mater. 2020;262:120865. doi: 10.1016/j.conbuildmat.2020.120865.
  • Maraghechi H, Shafaatian SMH, Fischer G, et al. The role of residual cracks on alkali silica reactivity of recycled glass aggregates. Cem Concr Compos. 2012;34(1):41–47. doi: 10.1016/j.cemconcomp.2011.07.004.
  • Maraghechi H, Rajabipour F, Pantano CG, et al. Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity. Cem Concr Res. 2016;87:1–13. doi: 10.1016/j.cemconres.2016.05.004.
  • Leemann A, Bagheri M, Lothenbach B, et al. Alkali–silica reaction – a multidisciplinary approach. RILEM Tech Lett. 2022;6:169–187. doi: 10.21809/rilemtechlett.2021.151.
  • Shi Z, Lothenbach B. The combined effect of potassium, sodium and calcium on the formation of alkali–silica reaction products. Cem Concr Res. 2020;127:105914. doi: 10.1016/j.cemconres.2019.105914.
  • Boehm-Courjault E, Barbotin S, Leemann A, et al. Microstructure, crystallinity and composition of alkali–silica reaction products in concrete determined by transmission electron microscopy. Cem Concr Res. 2020;130:105988. doi: 10.1016/j.cemconres.2020.105988.
  • Leemann A, Shi Z, Lindgård J. Characterization of amorphous and crystalline ASR products formed in concrete aggregates. Cem Concr Res. 2020;137:106190. doi: 10.1016/j.cemconres.2020.106190.
  • Tapas MJ, Sofia L, Vessalas K, et al. Efficacy of SCMs to mitigate ASR in systems with higher alkali contents assessed by pore solution method. Cem Concr Res. 2021;142:106353. doi: 10.1016/j.cemconres.2021.106353.
  • Ma P, Li J, Bai J, et al. Effect of type and quantity of inherent alkali cations on alkali–silica reaction. Cem Concr Res. 2023;173:107293. doi: 10.1016/j.cemconres.2023.107293.
  • Gholizadeh Vayghan A, Rajabipour F, Rosenberger JL. Composition–rheology relationships in alkali–silica reaction gels and the impact on the gel’s deleterious behavior. Cem Concr Res. 2016;83:45–56. doi: 10.1016/j.cemconres.2016.01.011.
  • Bleszynski RF, Thomas MDA. Microstructural studies of alkali–silica reaction in fly ash concrete immersed in alkaline solutions. Adv Cem Based Mater. 1998;7(2):66–78. doi: 10.1016/S1065-7355(97)00030-8.
  • Hong SY, Glasser FP. Alkali sorption by C–S–H and C–A–S–H gels: part II. Role of alumina. Cem Concr Res. 2002;32(7):1101–1111. doi: 10.1016/S0008-8846(02)00753-6.
  • Sun GK, Young JF, Kirkpatrick RJ. The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cem Concr Res. 2006;36(1):18–29. doi: 10.1016/j.cemconres.2005.03.002.
  • Montanari L, Suraneni P, Tsui-Chang M, et al. Hydration, pore solution, and porosity of cementitious pastes made with seawater. J Mater Civ Eng. 2019;31(8):04019154. doi: 10.1061/(ASCE)MT.1943-5533.0002818.
  • Bagheri M, Lothenbach B, Shakoorioskooie M, et al. Effect of different ions on dissolution rates of silica and feldspars at high pH. Cem Concr Res. 2022;152:106644. doi: 10.1016/j.cemconres.2021.106644.
  • Shafaatian SMH, Akhavan A, Maraghechi H, et al. How does fly ash mitigate alkali–silica reaction (ASR) in accelerated mortar bar test (ASTM C1567)? Cem Concr Compos. 2013;37:143–153. doi: 10.1016/j.cemconcomp.2012.11.004.
  • Dixit S, Van Cappellen P, van Bennekom AJ. Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Mar Chem. 2001;73(3–4):333–352. doi: 10.1016/S0304-4203(00)00118-3.
  • Wei S, Zheng K, Zhou J, et al. The combined effect of alkalis and aluminum in pore solution on alkali–silica reaction. Cem Concr Res. 2022;154:106723. doi: 10.1016/j.cemconres.2022.106723.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.