2,165
Views
24
CrossRef citations to date
0
Altmetric
Addendum

Beyond multiple mechanisms and a unique drug: Defective autophagy as pivotal player in cerebral cavernous malformation pathogenesis and implications for targeted therapies

, , , , &
Article: e1142640 | Received 17 Nov 2015, Accepted 11 Jan 2016, Published online: 10 Mar 2016

References

  • Batra S, Lin D, Recinos PF, Zhang J, Rigamonti D. Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol 2009; 5:659-70; PMID:19953116; http://dx.doi.org/10.1038/nrneurol.2009.177
  • Fontanella M. Cerebral Cavernous Malformations, ed. Minerva Medica 2015; pp. 1-140. ISBN-13 978-88-7711-842-4. http://www.minervamedica.it/it/volumi/specialita-mediche/neurochirurgia/scheda.php?cod=L10023
  • Rigamonti D. Cavernous Malformations of the nervous system. Cambridge University Press, 2011; http://dx.doi.org/10.1017/CBO9781139003636
  • Trapani E, Retta SF. Cerebral cavernous malformation (CCM) disease: from monogenic forms to genetic susceptibility factors. J Neurosurg Sci 2015; 59:201-9; PMID:25896717
  • Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E. Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. Febs Journal 2010; 277:1070-5; PMID:20096038; http://dx.doi.org/10.1111/j.1742-4658.2009.07535.x
  • Corr M, Lerman I, Keubel JM, Ronacher L, Misra R, Lund F, Sarelius IH, Glading AJ. Decreased Krev Interaction-Trapped 1 Expression Leads to Increased Vascular Permeability and Modifies Inflammatory Responses In Vivo. Arterioscl Throm Vas 2012; 32:2702-+; http://dx.doi.org/10.1161/ATVBAHA.112.300115
  • Glading A, Han J, Stockton RA, Ginsberg MH. KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell-cell junctions. J Cell Biol 2007; 179:247-54; PMID:17954608; http://dx.doi.org/10.1083/jcb.200705175
  • Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 2013; 498:492-+; PMID:23748444; http://dx.doi.org/10.1038/nature12207
  • Stockton RA, Shenkar R, Awad IA, Ginsberg MH. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 2010; 207:881-96; PMID:20308363; http://dx.doi.org/10.1084/jem.20091258
  • Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Jones CA, Zhu W, et al. The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 2009; 15:177-84; PMID:19151728; http://dx.doi.org/10.1038/nm.1911
  • Zheng XJ, Xu C, Di Lorenzo A, Kleaveland B, Zou ZY, Seiler C, Chen M, Cheng L, Xiao JP, He J, et al. CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. Journal of Clinical Investigation 2010; 120:2795-804; PMID:20592472; http://dx.doi.org/10.1172/JCI39679
  • Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, Walker AE, Goitre L, Delle Monache S, Retta SF, et al. Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 2015; 131:289-99; PMID:25486933; http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010403
  • Goitre L, Balzac F, Degani S, Degan P, Marchi S, Pinton P, Retta SF. KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One 2010; 5:e11786; PMID:20668652; http://dx.doi.org/10.1371/journal.pone.0011786
  • Goitre L, De Luca E, Braggion S, Trapani E, Guglielmotto M, Biasi F, Forni M, Moglia A, Trabalzini L, Retta SF. KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med 2014; 68:134-47; PMID:24291398; http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.020
  • Moglia A, Goitre L, Gianoglio S, Baldini E, Trapani E, Genre A, Scattina A, Dondo G, Trabalzini L, Beekwilder J, Retta SF. Evaluation of the bioactive properties of avenanthramide analogs produced in recombinant yeast. Biofactors, 2015; 41(1):15-27. PMID:25639351
  • Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. J Cell Sci 2014; 127:701-7; PMID:24481819; http://dx.doi.org/10.1242/jcs.138388
  • Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell 2014; 159:1263-76; PMID:25480292; http://dx.doi.org/10.1016/j.cell.2014.11.006
  • Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368:651-62; PMID:23406030; http://dx.doi.org/10.1056/NEJMra1205406
  • Sica V, Galluzzi L, Bravo-San Pedro JM, Izzo V, Maiuri MC, Kroemer G. Organelle-Specific Initiation of Autophagy. Mol Cell 2015; 59:522-39; PMID:26295960; http://dx.doi.org/10.1016/j.molcel.2015.07.021
  • Rimessi A, Bonora M, Marchi S, Patergnani S, Marobbio CM, Lasorsa FM, Pinton P. Perturbed mitochondrial Ca2+ signals as causes or consequences of mitophagy induction. Autophagy 2013; 9:1677-86; PMID:24121707; http://dx.doi.org/10.4161/auto.24795
  • Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, Ferroni L, Patergnani S, Missiroli S, Goitre L, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med 2015; 7(11):1403-17; PMID:26417067; http://dx.doi.org/10.15252/emmm.201505316
  • Glading AJ, Ginsberg MH. Rap1 and its effector KRIT1/CCM1 regulate beta-catenin signaling. Dis Model Mech 2010; 3:73-83; PMID:20007487; http://dx.doi.org/10.1242/dmm.003293
  • Lampugnani MG, Orsenigo F, Rudini N, Maddaluno L, Boulday G, Chapon F, Dejana E. CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 2010; 123:1073-80; PMID:20332120; http://dx.doi.org/10.1242/jcs.059329
  • Bravi L, Rudini N, Cuttano R, Giampietro C, Maddaluno L, Ferrarini L, Adams RH, Corada M, Boulday G, Tournier-Lasserve E, et al. Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. P Natl Acad Sci USA 2015; 112:8421-6; http://dx.doi.org/10.1073/pnas.1501352112
  • Wustehube J, Bartol A, Liebler SS, Brutsch R, Zhu Y, Felbor U, Sure U, Augustin HG, Fischer A. Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci U S A 2010; 107:12640-5; PMID:20616044; http://dx.doi.org/10.1073/pnas.1000132107
  • You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U, Zhu Y. Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med 2013; 17:407-18; PMID:23388056; http://dx.doi.org/10.1111/jcmm.12022
  • Schulz GB, Wieland E, Wustehube-Lausch J, Boulday G, Moll I, Tournier-Lasserve E, Fischer A. Cerebral Cavernous Malformation-1 Protein Controls DLL4-Notch3 Signaling Between the Endothelium and Pericytes. Stroke 2015; 46:1337-43; PMID:25791711; http://dx.doi.org/10.1161/STROKEAHA.114.007512
  • DiStefano PV, Kuebel JM, Sarelius IH, Glading AJ. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling. J Biol Chem 2014; 289:33054-65; PMID:25320085; http://dx.doi.org/10.1074/jbc.M114.582304
  • Cullere X, Plovie E, Bennett PM, MacRae CA, Mayadas TN. The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci U S A 2015; 112(46):14284-9; PMID:26540726
  • Renz M, Otten C, Faurobert E, Rudolph F, Zhu Y, Boulday G, Duchene J, Mickoleit M, Dietrich AC, Ramspacher C, et al. Regulation of beta1 integrin-Klf2-mediated angiogenesis by CCM proteins. Dev Cell 2015; 32:181-90; PMID:25625207; http://dx.doi.org/10.1016/j.devcel.2014.12.016
  • Faurobert E, Rome C, Lisowska J, Manet-Dupe S, Boulday G, Malbouyres M, Balland M, Bouin AP, Keramidas M, Bouvard D, et al. CCM1-ICAP-1 complex controls beta1 integrin-dependent endothelial contractility and fibronectin remodeling. J Cell Biol 2013; 202:545-61; PMID:23918940; http://dx.doi.org/10.1083/jcb.201303044
  • Macek Jilkova Z, Lisowska J, Manet S, Verdier C, Deplano V, Geindreau C, Faurobert E, Albiges-Rizo C, Duperray A. CCM proteins control endothelial beta1 integrin dependent response to shear stress. Biol Open 2014; 3:1228-35; PMID:25432514; http://dx.doi.org/10.1242/bio.201410132
  • Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, Small JV, Retta SF. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci 2005; 118:4765-83; PMID:16219685; http://dx.doi.org/10.1242/jcs.02584
  • Retta SF, Balzac F, Avolio M. Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol 2006; 85:283-93; PMID:16546572; http://dx.doi.org/10.1016/j.ejcb.2005.09.007
  • Goitre L, Pergolizzi B, Ferro E, Trabalzini L, Retta SF. Molecular Crosstalk between Integrins and Cadherins: Do Reactive Oxygen Species Set the Talk? J Signal Transduct 2012; 2012:807682; PMID:22203898; http://dx.doi.org/10.1155/2012/807682
  • Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 2007; 17:422-7; PMID:17804237; http://dx.doi.org/10.1016/j.tcb.2007.07.009
  • Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death and Differentiation 2015; 22:377-88; PMID:25257172; http://dx.doi.org/10.1038/cdd.2014.150
  • Zhao Y, Yang J, Liao WJ, Liu XY, Zhang H, Wang S, Wang DL, Feng JN, Yu L, Zhu WG. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 2010; 12:665-U88; PMID:20543840; http://dx.doi.org/10.1038/ncb2069
  • Liu J, Bi X, Chen T, Zhang Q, Wang SX, Chiu JJ, Liu GS, Zhang Y, Bu P, Jiang F. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis 2015; 6:e1827; PMID:26181207; http://dx.doi.org/10.1038/cddis.2015.193
  • Yogev O, Shaulian E. Jun proteins inhibit autophagy and induce cell death. Autophagy 2010; 6:566-7; PMID:20404571; http://dx.doi.org/10.4161/auto.6.4.11950
  • Lin R, Feng J, Dong S, Pan R, Zhuang H, Ding Z. Regulation of autophagy of prostate cancer cells by beta-catenin signaling. Cell Physiol Biochem 2015; 35:926-32; PMID:25633614; http://dx.doi.org/10.1159/000369749
  • Mleczak A, Millar S, Tooze SA, Olson MF, Chan EY. Regulation of autophagosome formation by Rho kinase. Cell Signal 2013; 25:1-11; PMID:22975682; http://dx.doi.org/10.1016/j.cellsig.2012.09.010
  • Huang J, Lam GY, Brumell JH. Autophagy Signaling Through Reactive Oxygen Species. Antioxid Redox Sign 2011; 14:2215-31; http://dx.doi.org/10.1089/ars.2010.3554
  • Tuloup-Minguez V, Hamai A, Greffard A, Nicolas V, Codogno P, Botti J. Autophagy modulates cell migration and beta1 integrin membrane recycling. Cell Cycle 2013; 12:3317-28; PMID:24036548; http://dx.doi.org/10.4161/cc.26298
  • Kumar S, Guru SK, Pathania AS, Kumar A, Bhushan S, Malik F. Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis 2013; 4:e889; PMID:24176847; http://dx.doi.org/10.1038/cddis.2013.399
  • Kim KW, Paul P, Qiao J, Lee S, Chung DH. Enhanced autophagy blocks angiogenesis via degradation of gastrin-releasing peptide in neuroblastoma cells. Autophagy 2013; 9:1579-90; PMID:24108003; http://dx.doi.org/10.4161/auto.25987
  • Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 2011; 36:30-8; PMID:20728362; http://dx.doi.org/10.1016/j.tibs.2010.07.007
  • Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 2012; 441:523-40; PMID:22187934; http://dx.doi.org/10.1042/BJ20111451
  • Li DY, Whitehead KJ. Evaluating Strategies for the Treatment of Cerebral Cavernous Malformations. Stroke 2010; 41:S92-S4; PMID:20876517; http://dx.doi.org/10.1161/STROKEAHA.110.594929
  • McDonald DA, Shi CB, Shenkar R, Stockton RA, Liu FF, Ginsberg MH, Marchuk DA, Awad IA. Fasudil Decreases Lesion Burden in a Murine Model of Cerebral Cavernous Malformation Disease. Stroke 2012; 43:571-4; PMID:22034008; http://dx.doi.org/10.1161/STROKEAHA.111.625467
  • Wiseman H. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett 1993; 326:285-8; PMID:8325381; http://dx.doi.org/10.1016/0014-5793(93)81809-E
  • Aghajanian A, Wittchen ES, Campbell SL, Burridge K. Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. Plos One 2009; 4:e8045; PMID:19956681; http://dx.doi.org/10.1371/journal.pone.0008045
  • Adam O, Laufs U. Antioxidative effects of statins. Arch Toxicol 2008; 82:885-92; PMID:18670762; http://dx.doi.org/10.1007/s00204-008-0344-4
  • Kuhlmann CR, Gerigk M, Bender B, Closhen D, Lessmann V, Luhmann HJ. Fluvastatin prevents glutamate-induced blood-brain-barrier disruption in vitro. Life Sci 2008; 82:1281-7; PMID:18534629; http://dx.doi.org/10.1016/j.lfs.2008.04.017
  • Ma Z, Zhang J, Ji E, Cao G, Li G, Chu L. Rho kinase inhibition by fasudil exerts antioxidant effects in hypercholesterolemic rats. Clin Exp Pharmacol Physiol 2011; 38:688-94; PMID:21711379; http://dx.doi.org/10.1111/j.1440-1681.2011.05561.x
  • Costa D, Gomes A, Reis S, Lima JL, Fernandes E. Hydrogen peroxide scavenging activity by non-steroidal anti-inflammatory drugs. Life Sci 2005; 76:2841-8; PMID:15808884; http://dx.doi.org/10.1016/j.lfs.2004.10.052
  • Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015; 22:58-73; PMID:25236395; http://dx.doi.org/10.1038/cdd.2014.137
  • Zhang J, Yang Z, Xie L, Xu L, Xu D, Liu X. Statins, autophagy and cancer metastasis. Int J Biochem Cell Biol 2013; 45:745-52; PMID:23147595; http://dx.doi.org/10.1016/j.biocel.2012.11.001
  • Wei YM, Li X, Xu M, Abais JM, Chen Y, Riebling CR, Boini KM, Li PL, Zhang Y. Enhancement of Autophagy by Simvastatin through Inhibition of Rac1-mTOR Signaling Pathway in Coronary Arterial Myocytes. Cell Physiol Biochem 2013; 31:925-37; PMID:23817226; http://dx.doi.org/10.1159/000350111
  • Iorio F, Isacchi A, di Bernardo D, Brunetti-Pierri N. Identification of small molecules enhancing autophagic function from drug network analysis. Autophagy 2010; 6:1204-5; PMID:20930556; http://dx.doi.org/10.4161/auto.6.8.13551
  • Gurpinar E, Grizzle WE, Shacka JJ, Mader BJ, Li N, Piazza NA, Russo S, Keeton AB, Piazza GA. A Novel Sulindac Derivative Inhibits Lung Adenocarcinoma Cell Growth through Suppression of Akt/mTOR Signaling and Induction of Autophagy. Molecular Cancer Therapeutics 2013; 12:663-74; PMID:23443799; http://dx.doi.org/10.1158/1535-7163.MCT-12-0785
  • Chiou SK, Hoa N, Hodges A. Sulindac sulfide induces autophagic death in gastric epithelial cells via survivin down-regulation: a mechanism of NSAIDs-induced gastric injury. Biochem Pharmacol 2011; 81:1317-23; PMID:21458423; http://dx.doi.org/10.1016/j.bcp.2011.03.019
  • Lisse TS, Hewison M. Vitamin D: a new player in the world of mTOR signaling. Cell Cycle 2011; 10:1888-9; PMID:21558808; http://dx.doi.org/10.4161/cc.10.12.15620
  • Wu S, Sun J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discov Med 2011; 11:325-35; PMID:21524386
  • Kim TH, Choi SJ, Lee YH, Song GG, Ji JD. Combined therapeutic application of mTOR inhibitor and vitamin D(3) for inflammatory bone destruction of rheumatoid arthritis. Med Hypotheses 2012; 79:757-60; PMID:22967804; http://dx.doi.org/10.1016/j.mehy.2012.08.022
  • Liu ML, Wilk SA, Wang AP, Zhou LJ, Wang RH, Ogawa W, Deng CX, Dong LQ, Liu F. Resveratrol Inhibits mTOR Signaling by Promoting the Interaction between mTOR and DEPTOR. J Biol Chem 2010; 285:36387-94; PMID:20851890; http://dx.doi.org/10.1074/jbc.M110.169284
  • Choquet H, Trapani E, Goitre L, Trabalzini L, Akers A, Fontanella M, Hart BL, Morrison LA, Pawlikowska L, Kim H, Retta SF. Cytochrome P450 and Matrix Metalloproteinase Genetic Modifiers of Disease Severity in Cerebral Cavernous Malformation type 1. Free Radic Biol Med. 2016; 92:100-109; PMID:26795600; http://dx.doi.org/10.1016/j.freeradbiomed.2016.01.008