201
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deep automatic soil roughness estimation from digital images

, , &
Article: 2342955 | Received 07 Jan 2024, Accepted 10 Apr 2024, Published online: 25 Apr 2024

References

  • Aguilar, M., Aguilar, F., & Negreiros, J. (2009). Off-the-shelf laser scanning and close-range digital photogrammetry for measuring agricultural soils microrelief. Biosystems Engineering, 103(4), 504–11. https://doi.org/10.1016/j.biosystemseng.2009.02.010
  • Al-Kaisi, M. M., Lal, R., Olson, K. R., & Lowery, B. (2017). Chapter 1 - fundamentals and functions of soil environment. In M. Mahdi & B.L. Al-Kaisi (Eds.), Soil health and intensification of agroecosytems (pp. 1–23). Academic Press.
  • Allmaras, R. R., Burwell, R. E., Larson, W. E., & Holt, R. F. (1966). Total porosity and random roughness of the interrow zone as influenced by tillage, agricultural research service. US Dept. of Agriculture.
  • Amoah, J. K. O., Amatya, D. M., & Nnaji, S. (2013). Quantifying watershed surface depression storage: Determination and application in a hydrologic model. Hydrological Processes, 274(17), 2401–2413. https://doi.org/10.1002/hyp.9364
  • Barneveld, R. J., Seeger, M., & Maalen-Johansen, I. (2013). Assessment of terrestrial laser scanning technology for obtaining high-resolution DEMs of soils. Earth Surface Processes and Landforms, 38(1), 90–94. https://doi.org/10.1002/esp.3344
  • Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., & Thomsen, A. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 81(2–3), 179–193. https://doi.org/10.1016/S0034-4257(01)00342-X
  • Burwell, R. E., Allmaras, R. R., & Amemiya, M. (1963). A field measurement of total porosity and surface microrelief of soils. Soil Science Society of America Journal, 27(6), 697–700. https://doi.org/10.2136/sssaj1963.03615995002700060037x
  • Connolly, A. (2022). 10 Digital Technologies That Are Transforming Agriculture. https://www.forbes.com/sites/forbestechcouncil/2022/04/26/10-digital-technologies-that-are-transforming-agriculture
  • Cremers, N. H. D. T., Van Dijk, P. M., De Roo, A. P. J., & Verzandvoort, M. A. (1996). Spatial and temporal variability of soil surface roughness and the application in hydrological and soil erosion modelling. Hydrological Processes, 10(8), 1035–1047.
  • Elangovan, M., Sakthivel, N. R., Saravanamurugan, S., Nair, B. B., & Sugumaran, V. (2015). Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning. Procedia Computer Science, 50, 282–288. https://doi.org/10.1016/j.procs.2015.04.047
  • Feldioreanu, G., Popa, S., & Ivanovici, M. (2023). Convolutional neural network implemented on FPGA for trajectory classification. International Symposium on Signals, Circuits and Systems (ISSCS) (pp. 1–4). Iasi, Romania.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
  • Herodowicz-Mleczak, K., Piekarczyk, J., Kaźmierowski, C., Nowosad, J., & Mleczak, M. (2022). Estimating soil surface roughness with models based on the information about tillage practises and soil parameters. Journal of Advances in Modeling Earth Systems, 14(3). https://doi.org/10.1029/2021MS002578
  • Herodowicz-Mleczak, K., Piekarczyk, J., Ratajkiewicz, H., Nowosad, J., Śledź, S., Kaźmierowski, C., Królewicz, S., & Kierzek, R. (2023). Estimation of soil surface roughness parameters under simulated rainfall using spectral reflectance in optical domain. Earth & Space Science, 10(8). https://doi.org/10.1029/2022EA002642
  • Herodowicz, K., & Piekarczyk, J. (2018). Effects of soil surface roughness on soil processes and remote sensing data interpretation and its measuring techniques - a review. Polish Journal of Soil Science, 51(2), 229. https://doi.org/10.17951/pjss.2018.51.2.229
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA (pp. 770–778).
  • Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA (pp. 7132–7141).
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, (Vol. 25, pp. 1097–1105). https://dl.acm.org/doi/10.1145/3065386
  • Latief, A., & Firasath, N. (2021). Agriculture 5.0: Artificial Intelligence, IoT and machine learning. CRC Press.
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
  • Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts. In International Conference on Learning Representations, Toulon, France.
  • Mankoff, K. D., & Russo, T. A. (2013). The kinect: A low-cost, high-resolution, short-range 3D camera. Earth Surface Processes and Landforms, 38(9), 926–936. https://doi.org/10.1002/esp.3332
  • Marandskiy, K., & Ivanovici, M. (2023, July 13–14). Soil roughness estimation using fractal analysis on digital images of soil surface. International Symposium on Signals, Circuits and Systems, Iasi, Romania.
  • Matranga, G., Palazzi, F., Leanza, A., Milella, A., Reina, G., Cavallo, E., & Biddoccu, M. (2023). Estimating soil surface roughness by proximal sensing for soil erosion modeling implementation at field scale. Environmental Research, 238(2), 117191. https://doi.org/10.1016/j.envres.2023.117191
  • Moreno, R. G., Diaz Alvarez, M. C., Tarquis, A., Gonzalez, A. P., & Requejo, A. S. (2010). Shadow analysis of soil surface roughness compared to the chain set method and direct measurement of micro-relief. Biogeosciences, 7(8), 2477–2487. https://doi.org/10.5194/bg-7-2477-2010
  • Morgan, R. P. C., & Duzant, J. H. (2008). Modified MMF (Morgan–Morgan–Finney) model for evaluating effects of crops and vegetation cover on soil erosion. Earth Surface Processes and Landforms, 33(1), 90–106. https://doi.org/10.1002/esp.1530
  • Morris, J. B., & Wang, M. L. (2007). Anthocyanin and potential therapeutic traits in clitoria, desmodium, catharanthus and hibiscus species acta hort. ISHS.
  • Myttenaere, A. D., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean Absolute Percentage Error for Regression Models. Neurocomputing, 192(June), 38–48. https://doi.org/10.1016/j.neucom.2015.12.114
  • Palande, C., Nadar, R., Ambadekar, P., Sridhar, K., & Vashistha, T. (2022). Machine learning application for prediction of surface roughness of milled surface. In S. Kumar, J. Ramkumar, & P. Kyratsis (Eds.), Recent advances in manufacturing modelling and optimization. lecture notes in mechanical engineering (pp. 203–219). Springer.
  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & Desmaison, A. (2019). PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 8024–8035. https://doi.org/10.48550/arXiv.1912.01703
  • Popa, S., Feldioreanu, G., Marandskiy, K., & Ivanovici, M. (2023, July 3–6). Convolutional Neural Network Hardware Implementation for Soil Roughness Estimation 42nd EARSeL Symposium, Bucuresti, Romania.
  • Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215. https://doi.org/10.1016/j.gsf.2011.11.003
  • Rouse, J., Haas, R., & Schell, J. (1973). Monitoring vegetation systems in the Great Plains with ERTS, NASA Spec. Publication, 309–317. https://ntrs.nasa.gov/citations/19740022614
  • Russell, S. J. (2010). Artificial intelligence a modern approach. Pearson Education, Inc.
  • Saleh, A. (1993). Soil roughness measurement: Chain method. Journal of Soil and Water Conservation, 48(6), 527–529.
  • Sasidharan, T. S., Latini, D., Ivanovici, M., Schiavon, G., Thangavel, K., & Del Frate, F. (2023, July 3–6). Smart weed control: Real-time inference and on-board data processing using edge-AI. EARSeL Symposium, Bucharest, Romania.
  • Shapiro, C. A., Schepers, J. S., Francis, D. D., & Shanahan, J. F. (2013). Using a chlorophyll meter to improve N management. University of Nebraska-Lincoln Extension, Institute of Agriculture and Natural Resources.
  • Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, Computational and Biological Learning Society, Boston, MA, USA (pp. 1–14).
  • Singh, A., Gaurav, K., Rai, A. K., & Beg, Z. (2021). Machine learning to estimate surface roughness from Satellite Images. Remote Sensing, 3(19), 3794. https://doi.org/10.3390/rs13193794
  • Skierucha, W., Wilczek, A., Szypłowska, A., Sławiński, C., & Lamorski, K. (2012). A TDR-Based soil moisture monitoring system with simultaneous measurement of soil temperature and electrical conductivity. Sensors, 12(10), 13545–13566. https://doi.org/10.3390/s121013545
  • Thomsen, L., Baartman, J., Barneveld, R., Starkloff, T., & Stolte, J. (2015). Soil surface roughness: Comparing old and new measuring methods and application in a soil erosion model. Soil, 1(1), 399–410. https://doi.org/10.5194/soil-1-399-2015
  • Vidal Vázquez, E., Vivas Miranda, J. G., & Paz González, A. (2005). Characterizing anisotropy and heterogeneity of soil surface microtopography using fractal models. Ecological Modelling, 182(3–4), 337–353. https://doi.org/10.1016/j.ecolmodel.2004.04.012
  • Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA (pp. 1492–1500). https://doi.org/10.1109/CVPR.2017.634
  • Zhang, W. (2021, February 26–28). Surface roughness prediction with machine learning. Journal of Physics: Conference Series, 1856, International Conference on Computer Network Security and Software Engineering (CNSSE 2021), Zhuhai, China.