95
Views
0
CrossRef citations to date
0
Altmetric
Articles

On some new fuzzy entropy measure of Pythagorean fuzzy sets for decision-making based on an extended TOPSIS approach

ORCID Icon & ORCID Icon
Pages 87-109 | Received 10 Aug 2022, Accepted 31 Dec 2023, Published online: 31 Jan 2024

References

  • Adeel, A., Akram, M., & Koam, A. N. A. (2019). Group decision-making based on m-polar fuzzy linguistic TOPSIS method. Symmetry, 11(6), 735. https://doi.org/10.3390/sym11060735
  • Akram, M., Shumaiza, & Smarandache, F. (2018). Decision-making with bipolar neutrosophic TOPSIS and bipolar neutrosophic ELECTRE-I. Axioms, 7(2), 33. https://doi.org/10.3390/axioms7020033
  • Alrasheedi, M., Mardani, A., Mishra, A. R., Rani, P., & Loganathan, N. (2022). An extended framework to evaluate sustainable suppliers in manufacturing companies using a new Pythagorean fuzzy entropy-SWARA-WASPAS decision-making approach. Journal of Enterprise Information Management, 35(2), 333–357. https://doi.org/10.1108/jeim-07-2020-0263
  • Askarifar, K., Motaffef, Z., & Aazaami, S. (2018). An investment development framework in Iran's seashores using TOPSIS and best-worst multi-criteria decision making methods. Decision Science Letters, 7(1), 55–64. https://doi.org/10.5267/j.dsl.2017.4.004
  • Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96. https://doi.org/10.1016/s0165-0114(86)80034-3
  • Athira, M. T., Jacob John, S., & Garg, H. (2020). A novel entropy measure of Pythagorean fuzzy soft sets. AIMS Mathematics, 5(2), 1050–1061. https://doi.org/10.3934/math.2020073
  • Balioti, V., Tzimopoulos, C., & Evangelides, C. (2018). Multi-criteria decision making using TOPSIS method under fuzzy environment. Application in spillway selection. Proceedings, 2(11), 637. https://doi.org/10.3390/proceedings2110637
  • Biswas, A., & Kumar, S. (2018). An integrated TOPSIS approach to MADM with interval-valued intuitionistic fuzzy settings. Advances in Intelligent Systems and Computing, 706, 533–543. https://doi.org/10.1007/978-981-10-8237-5_52
  • Chaurasiya, R., & Jain, D. (2022). Pythagorean fuzzy entropy measure-based complex proportional assessment technique for solving multi-criteria healthcare waste treatment problem. Granular Computing, 7(4), 917–930. https://doi.org/10.1007/s41066-021-00304-z
  • Chen, P. (2021). Effects of the entropy weight on TOPSIS. Expert Systems with Applications, 168, Article 114186. https://doi.org/10.1016/j.eswa.2020.114186
  • Chen, T.-Y. (2019). A novel PROMETHEE-based method using a Pythagorean fuzzy combinative distance-based precedence approach to multiple criteria decision making. Applied Soft Computing, 82, Article 105560. https://doi.org/10.1016/j.asoc.2019.105560
  • Dewi, R. K., Jonemaro, E. M. A., Kharisma, A. P., Farah, N. A., & Dewantoro, M. F. (2021). TOPSIS for mobile based group and personal decision support system. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 7(1), 43. https://doi.org/10.26594/register.v7i1.2140
  • Dutta, P., & Goala, S. (2018). Fuzzy decision making in medical diagnosis using an advanced distance measure on intuitionistic fuzzy sets. The Open Cybernetics & Systemics Journal, 12(1), 136–149. https://doi.org/10.2174/1874110x01812010136
  • Ejegwa, P. A. (2020). New similarity measures for Pythagorean fuzzy sets with applications. International Journal of Fuzzy Computation and Modelling, 3(1), 75. https://doi.org/10.1504/ijfcm.2020.106105
  • Ejegwa, P. A. (2021). Generalized triparametric correlation coefficient for Pythagorean fuzzy sets with application to MCDM problems. Granular Computing, 6(3), 557–566. https://doi.org/10.1007/s41066-020-00215-5
  • Ejegwa, P. A., & Awolola, J. A. (2021). Novel distance measures for Pythagorean fuzzy sets with applications to pattern recognition problems. Granular Computing, 6(1), 181–189. https://doi.org/10.1007/s41066-019-00176-4
  • Gandotra, N., Kizielewicz, B., Anand, A., Bączkiewicz, A., Shekhovtsov, A., Wątróbski, J., Rezaei, A., & Sałabun, W. (2021). New Pythagorean entropy measure with application in multi-criteria decision analysis. Entropy, 23(12), 1600. https://doi.org/10.3390/e23121600
  • Garg, H. (2016). A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. International Journal of Intelligent Systems, 31(9), 886–920. https://doi.org/10.1002/int.21809
  • Garg, H. (2019a). Generalized intuitionistic fuzzy entropy-based approach for solving multi-attribute decision-making problems with unknown attribute weights. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 89(1), 129–139. https://doi.org/10.1007/s40010-017-0395-0
  • Garg, H. (2019b). Intuitionistic fuzzy Hamacher aggregation operators with entropy weight and their applications to multi-criteria decision-making problems. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43(3):597–613. https://doi.org/10.1007/s40998-018-0167-0
  • Garg, H., & Kumar, K. (2018a). An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making. Soft Computing, 22(15), 4959–4970. https://doi.org/10.1007/s00500-018-3202-1
  • Garg, H., & Kumar, K. (2018b). Distance measures for connection number sets based on set pair analysis and its applications to decision-making process. Applied Intelligence, 48(10), 3346–3359. https://doi.org/10.1007/s10489-018-1152-z
  • Garg, H., & Singh, S. (2018). A novel triangular interval type-2 intuitionistic fuzzy sets and their aggregation operators. Iranian Journal of Fuzzy Systems, 15(5), 69–93. https://doi.org/10.22111/ijfs.2018.4159
  • Gupta, P., Mehlawat, M. K., Grover, N., & Pedrycz, W. (2018). Multi-attribute group decision making based on extended TOPSIS method under interval-valued intuitionistic fuzzy environment. Applied Soft Computing, 69, 554–567. https://doi.org/10.1016/j.asoc.2018.04.032
  • Han, Q., Li, W., Lu, Y., Zheng, M., Quan, W., & Song, Y. (2020). TOPSIS method based on novel entropy and distance measure for linguistic Pythagorean fuzzy sets with their application in multiple attribute decision making. IEEE Access, 8, 14401–14412. https://doi.org/10.1109/ACCESS.2019.2963261
  • Hung, W.-L., & Yang, M.-S. (2004). Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recognition Letters, 25(14), 1603–1611. https://doi.org/10.1016/j.patrec.2004.06.006
  • Hwang, C.-L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58–191). Springer. https://doi.org/10.1007/978-3-642-48318-9_3
  • Jamwal, A., Agrawal, R., Sharma, M., & Kumar, V. (2021). Review on multi-criteria decision analysis in sustainable manufacturing decision making. International Journal of Sustainable Engineering, 14(3), 202–225. https://doi.org/10.1080/19397038.2020.1866708
  • Kizielewicz, B., Więckowski, J. & Wątróbski, J. (2021). A study of different distance metrics in the TOPSIS method. In Czarnowski, I., Howlett, R. J., & Jain, L. C. (Eds.), Intelligent decision technologies. Smart innovation, systems and technologies (Vol. 238, pp. 275–284). Springer. https://doi.org/10.1007/978-981-16-2765-1_23
  • Kumar, K., & Garg, H. (2018). TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Computational and Applied Mathematics, 37(2), 1319–1329. https://doi.org/10.1007/s40314-016-0402-0
  • Kumar, R., Gandotra, N., & Suman. (2023). A novel Pythagorean fuzzy entropy measure using MCDM application in preference of the advertising company with TOPSIS approach. Materials Today: Proceedings, 80, 1742–1746. https://doi.org/10.1016/j.matpr.2021.05.497
  • Liu, P., Rani, P., & Mishra, A. R. (2021). A novel Pythagorean fuzzy combined compromise solution framework for the assessment of medical waste treatment technology. Journal of Cleaner Production, 292, Article 126047. https://doi.org/10.1016/j.jclepro.2021.126047
  • Mohammed, A., Setchi, R., Filip, M., Harris, I., & Li, X. (2018). An integrated methodology for a sustainable two-stage supplier selection and order allocation problem. Journal of Cleaner Production, 192, 99–114. https://doi.org/10.1016/j.jclepro.2018.04.131
  • Nguyen, X.-T., & Chou, S.-Y. (2021). Novel similarity measures, entropy of intuitionistic fuzzy sets and their application in software quality evaluation. Soft Computing, 26, 2009–2020. https://doi.org/10.21203/rs.3.rs-563745/v1
  • Pan, L., Gao, X., Deng, Y., & Cheong, K. H. (2022). Constrained Pythagorean fuzzy sets and its similarity measure. IEEE Transactions on Fuzzy Systems, 30(4), 1102–1113. https://doi.org/10.1109/tfuzz.2021.3052559
  • Peng, X., & Yang, Y. (2015). Some results for Pythagorean fuzzy sets. International Journal of Intelligent Systems, 30(11), 1133–1160. https://doi.org/10.1002/int.21738
  • Peng, X., Yuan, H., & Yang, Y. (2017). Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems, 32(10), 991–1029. https://doi.org/10.1002/int.21880
  • Rani, P., Mishra, A. R., Rezaei, G., Liao, H., & Mardani, A. (2020). Extended Pythagorean fuzzy TOPSIS method based on similarity measure for sustainable recycling partner selection. International Journal of Fuzzy Systems, 22(2), 735–747. https://doi.org/10.1007/s40815-019-00689-9
  • Selvachandran, G., Garg, H., & Quek, S. (2018). Vague entropy measure for complex vague soft sets. Entropy, 20(6), 403. https://doi.org/10.3390/e20060403
  • Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505–518. https://doi.org/10.1016/s0165-0114(98)00244-9
  • Thakur, P., Kizielewicz, B., Gandotra, N., Shekhovtsov, A., Saini, N., & Sałabun, W. (2022). The group decision-making using Pythagorean fuzzy entropy and the complex proportional assessment. Sensors, 22(13), 4879. https://doi.org/10.3390/s22134879
  • Thao, N. X., & Smarandache, F. (2019). A new fuzzy entropy on Pythagorean fuzzy sets. Journal of Intelligent & Fuzzy Systems, 37(1), 1065–1074. https://doi.org/10.3233/jifs-182540
  • Verma, R. (2021). On intuitionistic fuzzy order-α divergence and entropy measures with MABAC method for multiple attribute group decision-making. Journal of Intelligent & Fuzzy Systems, 40(1), 1191–1217. https://doi.org/10.3233/jifs-201540
  • Verma, R., & Merigó, J. M. (2021). On Sharma-Mittal’s entropy under intuitionistic fuzzy environment. Cybernetics and Systems, 52(6), 498–521. https://doi.org/10.1080/01969722.2021.1903722
  • Wan, S.-P., Jin, Z., & Dong, J.-Y. (2020). A new order relation for Pythagorean fuzzy numbers and application to multi-attribute group decision making. Knowledge and Information Systems, 62(2), 751–785. https://doi.org/10.1007/s10115-019-01369-8
  • Wan, S.-P., Li, S.-Q., & Dong, J.-Y. (2018). A three-phase method for Pythagorean fuzzy multi-attribute group decision making and application to haze management. Computers & Industrial Engineering, 123, 348–363. https://doi.org/10.1016/j.cie.2018.07.005
  • Wei, G., & Wei, Y. (2018). Similarity measures of Pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3), 634–652. https://doi.org/10.1002/int.21965
  • Xu, T.-T., Zhang, H., & Li, B.-Q. (2020). Pythagorean fuzzy entropy and its application in multiple-criteria decision-making. International Journal of Fuzzy Systems, 22(5), 1552–1564. https://doi.org/10.1007/s40815-020-00877-y
  • Yager, R. R. (2013). Pythagorean fuzzy subsets. 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). https://doi.org/10.1109/ifsa-nafips.2013.6608375
  • Yager, R. R. (2014). Pythagorean membership grades in multicriteria decision making. IEEE Transactions on Fuzzy Systems, 22(4), 958–965. https://doi.org/10.1109/tfuzz.2013.2278989
  • Yager, R. R. (2016). Properties and applications of Pythagorean fuzzy sets. Springer.
  • Yager, R. R., & Abbasov, A. M. (2013). Pythagorean membership grades, complex numbers, and decision making. International Journal of Intelligent Systems, 28(5), 436–452. https://doi.org/10.1002/int.21584
  • Yang, M.-S., & Hussain, Z. (2018). Fuzzy entropy for Pythagorean fuzzy sets with application to multicriterion decision making. Complexity, 2018, 1–14. https://doi.org/10.1155/2018/2832839
  • Yuan, X., & Zheng, C. (2022). Improved intuitionistic fuzzy entropy and its application in the evaluation of regional collaborative innovation capability. Sustainability, 14(5), 3129. https://doi.org/10.3390/su14053129
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x
  • Zhang, Q., Hu, J., Feng, J., Liu, A., & Li, Y. (2019). New similarity measures of Pythagorean fuzzy sets and their applications. IEEE Access, 7, 138192–138202. https://doi.org/10.1109/access.2019.2942766
  • Zhang, X., & Xu, Z. (2014). Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International Journal of Intelligent Systems, 29(12), 1061–1078. https://doi.org/10.1002/int.21676

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.