111
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Ecological Interactions Between Non-Native American Shad and Pacific Salmon: The Columbia River Case Study

ORCID Icon, , , , , , , & show all

References

  • Allendorf FW. 1991. Ecological and genetic effects of fish introductions: synthesis and recommendations. Can J Fish Aquat Sci. 48 (S1):178–181. doi: 10.1139/f91-318.
  • Beamesderfer RCP, Ward DL, Nigro AA. 1996. Evaluation of the biological basis for a predator control program on northern squawfish (Ptychocheilus oregonensis) in the Columbia and Snake rivers. Can J Fish Aquat Sci. Sci. 53(12):2898–2908. doi: 10.1139/f96-225.
  • Beamish RJ, editor. 2018. The Ocean Ecology of Pacific Salmon and Trout. Bethesda (MD): American Fisheries Society.
  • Bevan D, Harville J, Bergman P, Bjornn T, Crutchfield J, Klingeman P, Litchfield J. 1994. Snake river salmon recovery team: final recommendations to the national marine fisheries service – summary.
  • Bottom DL, Jones KK, Herring MJ. 1984. Fishes of the Columbia River estuary Final Report on the Fish Work Unit of the Columbia River Estuary Data Development Program, Research and Development Section, Oregon Department of Fish and Wildlife, Portland (OR): Oregon Department of Fish and Wildlife. p. 113.
  • Bottom DL, Jones KK. 1990. Species composition, distribution, and invertebrate prey of fish assemblages in the Columbia River Estuary. Progr Oceanogr.25(1–4):243–270. doi: 10.1016/0079-6611(90)90009-Q.
  • Bottom DL, Simenstad CA, Burke J, Baptista AM, Jay DA, Jones KK, Casillas E, Schiewe MH. 2005. Salmon at river’s end: the role of the estuary in the decline and recovery of Columbia River salmon NOAA Technical Memorandum. Nmfs-Nwfsc-68. Seattle, Washington: National Marine Fisheries Service. www.nwfsc.noaa.gov/publications/index.cfm.
  • Britton JR, Gozlan RE, Copp GH. 2011. Managing non-native fish in the environment. Fish Fish. 12(3):256–274. doi: 10.1111/j.1467-2979.2010.00390.x.
  • Britton JR. 2023. Contemporary perspectives on the ecological impacts of invasive freshwater fishes. J Fish Biol. 103(4):752–764. doi: 10.1111/jfb.15240.
  • Brodeur RD, Pearcy WG. 1990. Trophic relations of juvenile Pacific salmon off the Oregon and Washington coast. Fish Bull. 88:617–636.
  • Brodeur RD. 1989. Neustonic feeding by juvenile salmonids in coastal waters of the Northeast Pacific. Can J Zool. 67(8):1995–2007. doi: 10.1139/z89-284.
  • Busby PJ, Wainwright TC, Bryant GJ, Lierheimer LJ, Waples RS, Waknitz FW, Lagomarsino IV. 1996. Status review of west coast steelhead from Washington, Idaho, Oregon, and California. NOAA Technical Memorandum NMFS-NWFSC-27. U.S. Department of Commerce. Seattle, Washington: National Marine Fisheries Service.
  • Casal CMV. 2006. Global documentation of fish introductions: the growing crisis and recommendations for action. Biol Invasions. 8(1):3–11. doi: 10.1007/s10530-005-0231-3.
  • Chapman DW. 1986. Salmon and steelhead abundance in the Columbia River in the nineteenth century. Trans Amer Fish Soc. 115(5):662–670. doi: 10.1577/1548-8659(1986)115<662:SASAIT>2.0.CO;2.
  • Columbia River Data Access in Real Time (DART), University of Washington. 2023. Adult Passage Basin Summary. http://www.cbr.washington.edu/dart/query/adult_basin_sum.
  • Connor WP, Sneva JG, Tiffan KF, Steinhorst RK, Ross D. 2005. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin. Trans Amer Fish Soc. 134(2):291–304. doi: 10.1577/T03-131.3.
  • Connor WP, Steinhorst RK, Burge HL. 2003. Migrational behavior and seaward movement of wild subyearling fall Chinook salmon in the Snake River. N Amer J Fish Manage. 23(2):414–430. doi: 10.1577/1548-8675(2003)023<0414:MBASMO>2.0.CO;2.
  • Copeland T, Venditti DA, Barnett BR. 2014. The importance of juvenile migration tactics to adult recruitment in stream-type Chinook Salmon populations. Trans Am Fish Soc. 143(6):1460–1475. doi: 10.1080/00028487.2014.949011.
  • Crecco VA, Savoy TF. 1985. Effects of biotic and abiotic factors on growth and relative survival of young American shad, Alosa sapidissima, in the Connecticut River. Can J Fish Aquat Sci. 42(10):1640–1648. doi: 10.1139/f85-205.
  • Cucherousset J, Olden JD. 2011. Ecological impacts of non-native freshwater fishes. Fisheries. 36(5):215–230. doi: 10.1080/03632415.2011.574578.
  • Daly EA, Brodeur RD, Weitkamp LA. 2009. Ontogenetic shifts in diets of juvenile and subadult coho and Chinook salmon in coastal marine waters: important for marine survival? Trans Am Fish Soc. 138(6):1420–1438. doi: 10.1577/T08-226.1.
  • Dawley EM, Ledgerwood RD, Blahm TH, Sims CW, Durkin JT, Kirn RA, Rankis AE, Monan GE, Ossiander FJ. 1986. Migrational characteristics, biological observations, and relative survival of juvenile salmonids entering the Columbia River estuary, 1966-1983. National Marine Fisheries Service, NOAA, Report 81-102 to the Bonneville Power Administration, Portland.
  • Dill WA, Cordone AJ. 1997. History and status of introduced fishes in California, 1871-1996. California Department of Fish and Game Inland Fisheries Division; Vol. 178, pp. 1–414.
  • Emmett RL, Brodeur RD, Orton PM. 2004. The vertical distribution of juvenile salmon (Oncorhynchus spp.) and associated fishes in the Columbia River plume. Fish Oceanogr. 13(6):392–402. doi: 10.1111/j.1365-2419.2004.00294.x.
  • Essington TE, Quinn TP, Ewert VE. 2000. Intra- and interspecific competition and the reproductive success of sympatric Pacific salmon. Can J Fish Aquat Sci. 57(1):205–213. doi: 10.1139/f99-198.
  • Essington TE, Sorensen PW, Paron DG. 1998. High rate of redd superimposition by brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) in a Minnesota stream cannot be explained by habitat availability alone. Can J Fish Aquat Sci. 55(10):2310–2316. doi: 10.1139/f98-109.
  • Feeney RG, Boelke DV, Deroba JJ, Gaichas S, Irwin BJ, Lee M. 2019. Integrating management strategy evaluation into fisheries management: advancing best practices for stakeholder inclusion based on an MSE for Northeast US Atlantic herring. Can J Fish Aquat Sci. 76(7):1103–1111. doi: 10.1139/cjfas-2018-0125.
  • Gadomski DM, Barfoot CA. 1998. Diel and distributional abundance patterns of fish embryos and larvae in the lower Columbia and Deschutes rivers. Env Biol Fishes. 51(4):353–368. doi: 10.1023/A:1007485015830.
  • Geary WL, Bode M, Doherty TS, Fulton EA, Nimmo DG, Tulloch AI, Tulloch VJ, Ritchie EG. 2020. A guide to ecosystem models and their environmental applications. Nat Ecol Evol. 4(11):1459–1471. doi: 10.1038/s41559-020-01298-8.
  • Giorgi AE, Hillman TW, Stevenson JR, Hays SG, Peven CM. 1997. Factors that influence the downstream migration rates of juvenile salmon and steelhead through the hydroelectric system in the mid-Columbia River basin. N Am J Fish Manage. 17(2):268–282. doi: 10.1577/1548-8675(1997)017<0268:FTITDM>2.3.CO;2.
  • Good TP, Weitkamp LA, Lyons DE, Roby DD, Andrews KS, Bentley PJ. 2022. Availability of alternative prey influences avian predation on salmonids. Est Coasts. 45(7):2204–2218. doi: 10.1007/s12237-022-01076-8.
  • Gozlan RE, Britton JR, Cowx I, Copp GH. 2010. Current knowledge on non-native freshwater fish introductions. J Fish Biol. 76(4):751–786. doi: 10.1111/j.1095-8649.2010.02566.x.
  • Gustafson RG, Ford MJ, Teel DJ, Drake JS. 2010. Status review of eulachon (Thaleichthys pacificus) in Washington, Oregon, and California. NOAA Technical Memorandum NMFS-NWFSC-105. Seattle: U.S. Department of Commerce.
  • Gustafson RG, Wainwright TC, Winans GA, Waknitz FW, Parker LT, Waples RS. 1997. Status review of sockeye salmon from Washington and Oregon. NOAA Technical Memorandum NMFS-NWFSC-33. Seattle: U.S. Department of Commerce.
  • Hamman MG. 1981. Utilization of the Columbia River Estuary by American Shad, Alosa Sapidissima (Wilson) [Master’s Thesis]. Corvallis (OR): Oregon State University.
  • Haro A, Castro-Santos T. 2012. Passage of American shad: paradigms and realities. Mar Coast Fish. 4(1):252–261. doi: 10.1080/19425120.2012.675975.
  • Harris JE, McBride RS. 2009. American shad feeding on spawning grounds in the St. Johns River, Florida. Trans Am Fish Soc. 138(4):888–898. doi: 10.1577/T08-135.1.
  • Haskell CA, Beauchamp DA, Bollens SM. 2017. Trophic interactions and consumption rates of subyearling Chinook Salmon and nonnative juvenile American Shad in Columbia River reservoirs. Trans Am Fish Soc. 146(2):291–298. doi: 10.1080/00028487.2016.1264997.
  • Haskell CA, Tiffan KF, Rondorf DW. 2006. Food habits of juvenile American shad and dynamics of zooplankton in the lower Columbia River. Northwest Sci. 80:47–64.
  • Haskell CA, Tiffan KF, Rondorf DW. 2013. The effects of juvenile American shad planktivory on zooplankton production in Columbia River food webs. Trans Am Fish Soc. 142(3):606–620. doi: 10.1080/00028487.2012.728164.
  • Haskell CA. 2018. From salmon to shad: shifting sources of marine-derived nutrients in the Columbia River Basin. Ecol Freshwater Fish. 27(1):310–322. doi: 10.1111/eff.12348.
  • Hasselman DJ, Bentzen P, Narum SR, Quinn TP. 2018. Formation of population genetic structure following the introduction and establishment of non-native American shad (Alosa sapidissima) along the Pacific Coast of North America. Biol Invasions. 20(11):3123–3143. doi: 10.1007/s10530-018-1763-7.
  • Hasselman DJ, Hinrichsen RA, Shields BA, Ebbesmeyer CC. 2012a. The rapid establishment, dispersal, and increased abundance of invasive American shad in the Pacific Northwest. Fisheries. 37(3):103–114. doi: 10.1080/03632415.2012.659938.
  • Hasselman DJ, Hinrichsen RA, Shields BA, Ebbesmeyer CC. 2012b. American shad of the Pacific Coast: a harmful invasive species or benign introduction? Fisheries. 37(3):115–122. doi: 10.1080/03632415.2012.659941.
  • Hasselman DJ, Ricard D, Bentzen P. 2013. Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude. Mol Ecol. 22(6):1558–1573. doi: 10.1111/mec.12197.
  • Hendricks ML, Hoopes RL, Arnold DA, Kaufman ML. 2002. Homing of hatchery-reared American Shad to the Lehigh River, a tributary of the Delaware River. N Am J Fish Manage. 22(1):243–248. doi: 10.1577/1548-8675(2002)022<0243:HOHRAS>2.0.CO;2.
  • Hertz E, Trudel M, Brodeur RD, Daly EA, Eisner L, Farley EV, JrHarding JA, MacFarlane RB, Mazumder S, Moss JH, et al. 2015. Continental-scale variability in the feeding ecology of juvenile Chinook salmon along the coastal Northeast Pacific Ocean. Mar Ecol Prog Ser. 537:247–263. doi: 10.3354/meps11440.
  • Hinrichsen RA, Hasselman DJ, Ebbesmeyer CC, Shields BA. 2013. The role of impoundments, temperature, and discharge on colonization of the Columbia River basin, USA, by nonindigenous American Shad. Trans Am Fish Soc. 142(4):887–900. doi: 10.1080/00028487.2013.788553.
  • ISAB (Independent Scientific Advisory Board) 2021a. ISAB comparison of research findings on avian predation impacts on salmon survival. Portland (OR): Northwest Power and Conservation Council. www.nwcouncil.org/fw/isab/isab2021-2/.
  • ISAB (Independent Scientific Advisory Board). 2021b. American shad in the Columbia River: past, present, future. Portland (OR): Northwest Power and Conservation Council. ISAB Report 2021-4. https://www.nwcouncil.org/reports/american-shad-columbia-river-past-present-future/.
  • JCRMS (Joint Columbia River Management Staff). 2023. Joint staff report: stock status and fisheries for spring Chinook, summer Chinook, sockeye, steelhead, and other species. Oregon Department of Fish and Wildlife and Washington Department of Fish and Wildlife. https://www.dfw.state.or.us/fish/OSCRP/CRM/jsmreports.asp.
  • Johnson SP, Schindler DE. 2009. Trophic ecology of Pacific salmon (Oncorhynchus spp.) in the ocean: a synthesis of stable isotope research. Ecol Res. 24(4):855–863. doi: 10.1007/s11284-008-0559-0.
  • Kaplan IC, Francis TB, Punt AE, Koehn LE, Curchitser E, Hurtado-Ferro F, Johnson KF, Lluch-Cota SE, Sydeman WJ, Essington TE, et al. 2019. A multi-model approach to understanding the role of Pacific sardine in the California Current food web. Mar Ecol Prog Ser. 617:307–321.
  • Leggett WC, Carscadden JE. 1978. Latitudinal variation in reproductive characteristics of American shad (Alosa sapidissima): evidence for population specific life history strategies in fish. J Fish Res Bd Can. 35(11):1469–1478. doi: 10.1139/f78-230.
  • Leggett WC, Whitney RR. 1972. Water temperature and the migrations of American shad. Fish Bull. 70:659–670.
  • Leggett WC. 1977. Ocean migration rates of American shad (Alosa sapidissima). J Fish Res Bd Can. 34(9):1422–1426. doi: 10.1139/f77-203.
  • Lewis ZK. 2022. Foraging ecology of sexually-dimorphic marine generalist predators: describing Steller sea lion diet along coastal Washington. Master of Science thesis, Western Washington University, Bellingham, WA; 90 ­pages.
  • Limburg KE, Hattala KA, Kahnle A. 2003. American shad in its native range. Amer Fish Soc Symp. 35:125–140.
  • Limburg KE. 1996. Growth and migration of 0-year American shad (Alosa sapidissima) in the Hudson River estuary: otolith microstructural analysis. Can J Fish Aquat Sci. 53(1):220–238. doi: 10.1139/f95-160.
  • Lower Columbia River Fish Recovery Board. 2004. Lower Columbia Salmon Recovery and Fish and Wildlife Subbasin Plan. Portland: Northwest Power and Conservation Council.
  • MacAvoy SE, Garman GC, Macko SA. 2009. Anadromous fish as marine nutrient vectors. Fish Bull. 107:165–174.
  • Maltais EG, Daigle G, Colbeck G, Dodson JJ. 2010. Spawning dynamics of American shad (Alosa sapidissima) in the St. Lawrence River, Canada-USA. Ecol Freshw Fish. 19(4):586–594. doi: 10.1111/j.1600-0633.2010.00439.x.
  • McCabe GT, Emmett RL, Muir WD, Blahm TH. 1986. Utilization of the Columbia River estuary by subyearling Chinook salmon. Northwest Sci. 60:113–124.
  • McCabe GT, Muir WD, Emmett RL, Durkin JT. 1983. Interrelationships between juvenile salmonids and nonsalmonid fish in the Columbia River estuary. Fish Bull. 81:815–826.
  • McDowall RM. 2006. Crying wolf, crying foul, or crying shame: alien salmonids and a biodiversity crisis in the southern cool-temperate galaxioid fishes? Rev Fish Biol Fisheries. 16(3–4):233–422. doi: 10.1007/s11160-006-9017-7.
  • Miller TW, Brodeur RD, Rau G, Omori KL. 2010. Prey dominance shapes trophic structure of the northern California current pelagic food web: evidence from stable isotopes and diet analysis. Mar Ecol Prog Ser. 420:15–26. doi: 10.3354/meps08876.
  • Monk B, Weaver D, Thompson C, Ossiander F. 1989. Effects of flow and weir design on the passage behavior of American shad and salmonids in an experimental fish ladder. N Am J Fish Management.9(1):60–67. doi: 10.1577/1548-8675(1989)009<0060:EOFAWD>2.3.CO;2.
  • Moore JW, Schindler DE. 2004. Nutrient export from freshwater ecosystems by anadromous sockeye salmon (Oncorhynchus nerka). Can J Fish Aquat Sci. 61(9):1582–1589. doi: 10.1139/f04-103.
  • Myers JM, Kope RG, Bryant GJ, Teel D, Lierheimer LJ, Wainwright TC, Grant WS, Waknitz FW, Neely K, Lindley ST, et al. 1998. Status review of Chinook salmon from Washington. Idaho, Oregon, and California: NOAA Technical Memorandum NMFS-NWFSC-35. U.S. Department of Commerce.
  • Nack CC, Swaney DP, Limburg KE. 2019. Historical and projected changes in spawning phenologies of American Shad and Striped Bass in the Hudson River estuary. Mar Coast Fish. 11(3):271–284. doi: 10.1002/mcf2.10076.
  • Northwest Power and Conservation Council. 1994. 1994 Columbia River Basin Fish and Wildlife Program. https://www.nwcouncil.org/sites/default/files/program_15.pdf.
  • Orsi JA, Harding JA, Pool SS, Brodeur RD, Haldorson LJ, Murphy JM, Moss JU, Farley EV, JrSweeting RM, Morris JT, et al. 2007. Epipelagic fish assemblages associated with juvenile Pacific salmon in neritic waters of the California Current and the Alaska Current. Am Fish Soc Symp. 57:105–155.
  • Parsley MJ, Sauter ST, Wetzel LA. 2011. Impact of American shad in the Columbia River. Portland (OR): Bonneville Power Administration.
  • Pascual MA, Cussac V, Dyer D, Soto D, Vigliano P, Ortubay S, Macchi P. 2007. Freshwater fishes of Patagonia in the 21st Century after a hundred years of human settlement, species introductions, and environmental change. Aquat Ecosyst Health Manage. 10(2):212–227. doi: 10.1080/14634980701351361.
  • Pearcy WG, Fisher JP. 2011. Ocean distribution of the American shad (Alosa sapidissima) along the Pacific coast of North America. Fish Bull. 109:440–453.
  • Perryman HA, Hansen C, Howell D, Olsen E. 2021. A review of applications evaluating fisheries management scenarios through marine ecosystem models. Revs Fish Sci Aquacult. 29(4):800–835. doi: 10.1080/23308249.2021.1884642.
  • Petersen JH, Hinrichsen RA, Gadomski DM, Feil DH, Rondorf DW. 2003. American shad in the Columbia River. Am Fish Soc Symp. 35:141–155.
  • Plagányi ÉE, Punt AE, Hillary R, Morello EB, Thébaud O, Hutton T, Pillans RD, Thorson JT, Fulton EA, Smith AD, et al. 2014. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15(1):1–22. doi: 10.1111/j.1467-2979.2012.00488.x.
  • Poe TP, Hansel HC, Vigg S, Palmer DE, Prendergast LA. 1991. Feeding of predaceous fishes on out-migrating juvenile salmonids in the John Day Reservoir, Columbia River. Trans Am Fish Soc.120(4):405–420. doi: 10.1577/1548-8659(1991)120<0405:FOPFOO>2.3.CO;2.
  • Quinn TP, Adams DJ. 1996. Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology. 77(4):1151–1162. doi: 10.2307/2265584.
  • Quinn TP, Wetzel LA, Hasselman DJ, Larsen K. 2024. Differences in life history patterns of American shad, Alosa sapidissima, populations between ancestral Atlantic coast, and non-native Pacific coast rivers of North America. Can J Fish Aquatic Sci. 81. doi: 10.1139/cjfas-2023-0286.
  • Quinn TP. 2018. The behavior and ecology of pacific salmon and trout. 2nd ed. Seattle: University of Washington Press.
  • Sauter ST, Blubaugh TJ, Parsley MJ. 2011. Diet of juvenile and adult American shad in the Columbia River. In: M.P. Parsley, S.T. Sauter, and L.A. Wetzel. Impact of American shad on the Columbia River. Final Report, USGS, for Bonneville Power Administration. p. 9–38. Project 2007-275-00.
  • Sauter ST. 2011. Development of a bioenergetics model for age-0 American shad. In: M. P. Parsley, S.T. Sauter, and L.A. Wetzel. 2011. Impact of American shad on the Columbia River. Final Report, USGS, for Bonneville Power Administration. p. 54–66. Project 2007-275-00.
  • Sax DF, Schlaepfer MA, Olden JD. 2022. Valuing the contributions of non-native species to people and nature. Tr Ecol Evol. 37(12):1058–1066. doi: 10.1016/j.tree.2022.08.005.
  • Schroeder RK, Whitman LD, Cannon B, Olmsted P. 2016. Juvenile life-history diversity and population stability of spring Chinook salmon in the Willamette River basin, Oregon. Can J Fish Aquat Sci. 73(6):921–934. doi: 10.1139/cjfas-2015-0314.
  • Simenstad CA, Small LF, McIntire CD. 1990. Consumption processes and food web structure in the Columbia River Estuary. Prog Oceanogr. 25(1–4):271–297. doi: 10.1016/0079-6611(90)90010-Y.
  • Smith HM. 1896. A review of the history and results of the attempts to acclimatize fish and other water animals in the Pacific States Bulletin of the United States Fish Commission. Vol. 15. Washington, D.C. p. 379–472.
  • Sol SY, Lomax DP, Hanson AC, Corbett C, Johnson LL. 2021. Fish communities in the tidal freshwater wetlands of the lower Columbia River. Northwest Sci. 94(3–4):208–230. doi: 10.3955/046.094.0301.
  • Stewart SID, Spares AD, Varela JL, McLellan NR, Stokesbury MJW. 2021. Running on empty? Freshwater feeding by spawning anadromous alewife Alosa pseudoharengus. J Fish Biol. 99(4):1415–1429. doi: 10.1111/jfb.14850.
  • Tabor R, Shively R, Poe T. 1993. Predation on juvenile salmonids by smallmouth bass and northern squawfish in the Columbia River near Richland, Washington. N Am J Fisheries Man. 13(4):831–838. doi: 10.1577/1548-8675(1993)013<0831:POJSBS>2.3.CO;2.
  • Toussaint A, Charpin N, Beauchard O, Grenouillet G, Oberdorff T, Tedesco PA, Brosse S, Villéger S. 2018. Non-native species led to marked shifts in functional diversity of the world freshwater fish faunas. Ecol Letts. 21(11):1649–1659. doi: 10.1111/ele.13141.
  • Twining CW, Palkovacs EP, Friedman MA, Hasselman DJ, Post DM. 2017. Nutrient loading by anadromous fishes: species-specific contributions and the effects of diversity. Can J Fish Aquat Sci. 74(4):609–619. doi: 10.1139/cjfas-2016-0136.
  • Vigg S, Poe TP, Prendergast LA, Hansel HC. 1991. Rates of consumption of juvenile salmonids and alternative prey fish by northern squawfish, walleyes, smallmouth bass, and channel catfish in John Day Reservoir, Columbia River. Trans Am Fish Soc. 120(4):421–438. doi: 10.1577/1548-8659(1991)120<0421:ROCOJS>2.3.CO;2.
  • Waldman J. 2013. Running silver – restoring Atlantic Rivers and their great fish migrations. Guilford (Connecticut): Lyons Press.
  • Walters AK, Barnes RT, Post DM. 2009. Anadromous alewives (Alosa pseudoharengus) contribute marine-derived nutrients to coastal stream food webs. Can J Fish Aquat Sci. 66(3):439–448. doi: 10.1139/F09-008.
  • Wargo Rub AM, Som NA, Henderson MJ, Sandford BP, Van Doornik DM, Teel DJ, Tennis MJ, Langness OP, van der Leeuw BK, Huff DD. 2019. Changes in adult Chinook salmon (Oncorhynchus tshawytscha) survival within the lower Columbia River amid increasing pinniped abundance. Can J Fish Aquat Sci. 76(10):1862–1873. doi: 10.1139/cjfas-2018-0290.
  • Waters JM, Epifanio JM, Gunter T, Brown RL. 2000. Homing behaviour facilitates subtle genetic differentiation among river populations of Alosa sapidissima: microsatellites and mtDNA. J Fish Biol. 56(3):622–636. doi: 10.1111/j.1095-8649.2000.tb00760.x.
  • Weaver DM, Coghlan SM, Jr, Greig HS, Klemmer AJ, Perkins LB, Zydlewski J. 2018. Subsidies from anadromous sea lamprey (Petromyzon marinus) carcasses function as a reciprocal nutrient exchange between marine and freshwaters. River Res Apps. 34(7):824–833. doi: 10.1002/rra.3291.
  • Weitkamp L, Bentley PJ, Litz MNC. 2012. Seasonal and interannual variation in juvenile salmonids and associated fish assemblage in open waters of the lower Columbia River estuary. Fish Bull. 110:426–450.
  • Willson MF, Gende SM, Marston BH. 1998. Fishes and the forest – expanding perspectives on fish-wildlife interactions. BioSci. 48(6):455–462. doi: 10.2307/1313243.
  • Zimmerman MP. 1999. Food habits of smallmouth bass, walleyes, and northern pike minnow in the lower Columbia River basin during outmigration of juvenile anadromous salmonids. Trans Amer Fish Soc. 128(6):1036–1054. doi: 10.1577/1548-8659(1999)128<1036:FHOSBW>2.0.CO;2.
  • Zydlewski J, Stich DS, Roy S, Bailey M, Sheehan T, Sprankle K. 2021. What have we lost? Modeling dam impacts on American shad populations through their native range. Fr Marine Sci. 8(734213):1–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.