Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 9, 2024 - Issue 1
362
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in the field of developing biomarkers for re-irradiation: a how-to guide to small, powerful data sets and artificial intelligence

, , , , &
Pages 3-16 | Received 20 Jul 2023, Accepted 28 Feb 2024, Published online: 11 Mar 2024

References

  • K AV. Web of science search. 2023 [cited 2023 Jul 10]; search engine. Available from: https://www.webofscience.com/
  • Jiang H, Yu K, Cui Y, et al. Combination of immunotherapy and radiotherapy for recurrent malignant gliomas: results from a prospective study. Front Immunol. 2021;12. doi: 10.3389/fimmu.2021.632547
  • Navarria P, Pessina F, Clerici E, et al. Re-irradiation for recurrent high grade glioma (HGG) patients: results of a single arm prospective phase 2 study. Radiother Oncol. 2022;167:89–96. doi: 10.1016/j.radonc.2021.12.019
  • Ren X, Fu Y, Liu Z, et al. Image-guided interstitial brachytherapy for recurrent cervical cancer after radiotherapy: a single institution experience. Front Oncol. 2022;12:943703. doi: 10.3389/fonc.2022.943703
  • Eekers DBP, Roelofs E, Jelen U, et al. Benefit of particle therapy in re-irradiation of head and neck patients. Results of a multicentric in silico ROCOCO trial. Radiother Oncol. 2016;121(3):387–394. doi: 10.1016/j.radonc.2016.08.020
  • Shirai K, Ohno T, Saitoh J-I, et al. Prospective study of Isolated recurrent tumor re-irradiation with carbon-Ion beams. Front Oncol. 2019;9:9. doi: 10.3389/fonc.2019.00181
  • Held T, Tessonnier T, Franke H, et al. Ways to unravel the clinical potential of carbon ions for head and neck cancer reirradiation: dosimetric comparison and local failure pattern analysis as part of the prospective randomized CARE trial. Radiat Oncol. 2022;17(1):121. doi: 10.1186/s13014-022-02093-4
  • Navarria P, Minniti G, Clerici E, et al. Re-irradiation for recurrent glioma: outcome evaluation, toxicity and prognostic factors assessment. A multicenter study of the Radiation Oncology Italian Association (AIRO). J Neurooncol. 2019;142(1):59–67. doi: 10.1007/s11060-018-03059-x
  • Kessel KA, Hesse J, Straube C, et al. Validation of an established prognostic score after re-irradiation of recurrent glioma. Acta Oncol. 2017;56(3):422–426. doi: 10.1080/0284186X.2016.1276621
  • Kessel KA, Hesse J, Straube C, et al. Modification and optimization of an established prognostic score after re-irradiation of recurrent glioma. PLoS One. 2017;12(7):e0180457. doi: 10.1371/journal.pone.0180457
  • Kulinich DP, Sheppard JP, Nguyen T, et al. Radiotherapy versus combination radiotherapy-bevacizumab for the treatment of recurrent high-grade glioma: a systematic review. Acta Neurochir (Wien). 2021;163(7):1921–1934. doi: 10.1007/s00701-021-04794-3
  • Huang RD, Sun Z, Wang X-H, et al. Development of a Comorbidity-Based Nomogram to predict survival after salvage reirradiation of locally recurrent nasopharyngeal carcinoma in the Intensity-Modulated Radiotherapy Era. Front Oncol. 2020;10:625184. doi: 10.3389/fonc.2020.625184
  • Hu J, Huang Q, Gao J, et al. Clinical outcomes of carbon-ion radiotherapy for patients with locoregionally recurrent nasopharyngeal carcinoma. Cancer. 2020 Dec 1;126(23):5173–5183. doi: 10.1002/cncr.33197. Epub 2020 Sep 15. PMID: 32931035; PMCID: PMC7693227.
  • Liu L-T, Chen Q-Y, Tang L-Q, et al. With or without reirradiation in advanced local recurrent nasopharyngeal carcinoma: a case–control study. BMC Cancer. 2016;16(1):774. doi: 10.1186/s12885-016-2803-2
  • D’Agostino GR, Di Brina L, Mancosu P, et al. Reirradiation of locally recurrent prostate cancer with volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys. 2019;104(3):614–621. doi: 10.1016/j.ijrobp.2019.02.041
  • Taillez A, Bimbai A-M, Lacornerie T, et al. Studies of intra-fraction prostate motion during stereotactic irradiation in first irradiation and Re-irradiation. Front Oncol. 2021;11:690422. doi: 10.3389/fonc.2021.690422
  • Chung SY, Koom WS, Keum KC, et al. Treatment outcomes of Re-irradiation in locoregionally recurrent rectal cancer and clinical significance of proper patient selection. Front Oncol. 2019;9:9. doi: 10.3389/fonc.2019.00529
  • Shirai K, Ohno T, Saitoh J-I, et al. Prospective study of Isolated Recurrent tumor Re-irradiation with Carbon-Ion Beams. Front Oncol. 2019;9:181. doi: 10.3389/fonc.2019.00181
  • Sutera P, Bernard ME, Wang H, et al. Stereotactic body radiation therapy for locally progressive and recurrent pancreatic cancer after prior radiation. Front Oncol. 2018;8:52. doi: 10.3389/fonc.2018.00052
  • Huang R-D, Sun Z, Wang X-H, et al. Development of a Comorbidity-Based Nomogram to predict survival after salvage reirradiation of locally recurrent nasopharyngeal carcinoma in the Intensity-Modulated Radiotherapy Era. Front Oncol. 2021;10:10. doi: 10.3389/fonc.2020.625184
  • Zhao L, Fong AHW, Liu N, et al. Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNA-based prognostic model for distant metastasis. J Biomed Sci. 2018;25(1):16. doi: 10.1186/s12929-018-0417-5
  • Chen Y-P, Chan ATC, Le Q-T, et al. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64–80. doi: 10.1016/S0140-6736(19)30956-0
  • Lauko A, Lo A, Ahluwalia MS, et al. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol. 2022;82:162–175. doi: 10.1016/j.semcancer.2021.02.014
  • Ding R-B, Chen P, Rajendran BK, et al. Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat Commun. 2021;12(1):3046. doi: 10.1038/s41467-021-23379-3
  • Whitfield BT, Huse JT. Classification of adult-type diffuse gliomas: impact of the World Health Organization 2021 update. Brain Pathol. 2022;32(4):e13062. doi: 10.1111/bpa.13062
  • Minniti G, Niyazi M, Alongi F, et al. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol. 2021;16(1):36. doi: 10.1186/s13014-021-01767-9
  • Ng WT, Soong YL, Ahn YC, et al. International recommendations on reirradiation by intensity modulated radiation therapy for locally recurrent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2021;110(3):682–695. doi: 10.1016/j.ijrobp.2021.01.041
  • Chia S, Norris B, Speers C, et al. Human epidermal growth factor receptor 2 overexpression as a prognostic factor in a large tissue microarray series of node-negative breast cancers. J Clin Oncol. 2008;26(35):5697–704. doi: 10.1200/JCO.2007.15.8659
  • Patani N, Martin LA, Dowsett M. Biomarkers for the clinical management of breast cancer: international perspective. Int J Cancer. 2013;133(1):1–13. doi: 10.1002/ijc.27997
  • Schröder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320–8. doi: 10.1056/NEJMoa0810084
  • Wayant C, Page MJ, Vassar M. Evaluation of Reproducible Research Practices in oncology systematic reviews with meta-analyses referenced by national comprehensive cancer network guidelines. JAMA Oncol. 2019;5(11):1550–1555.
  • Chen EY, Raghunathan V, Prasad V. An overview of cancer drugs approved by the US Food and Drug Administration Based on the surrogate end point of response rate. JAMA Intern Med. 2019;179(7):915–921. doi: 10.1001/jamainternmed.2019.0583
  • Bhasin MK, Ndebele K, Bucur O, et al. Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier. Oncotarget. 2016;7(17):23263–23281. doi: 10.18632/oncotarget.8139
  • Huang B, Huang H, Zhang S, et al. Artificial intelligence in pancreatic cancer. Theranostics. 2022;12(16):6931–6954. doi: 10.7150/thno.77949
  • Tsai TI, Zhang Y, Zhang Z, et al. Considering relationship of proteins for radiotherapy prognosis of bladder cancer cells in small data set. Methods Inf Med. 2018;57(4):220–229. doi: 10.3414/ME17-02-0003
  • Chao GY, Tsai T-I, Lu T-J, et al. A new approach to prediction of radiotherapy of bladder cancer cells in small dataset analysis. Expert Syst Appl. 2011;38(7):7963–7969. doi: 10.1016/j.eswa.2010.12.035
  • Krause J, Grabsch HI, Kloor M, et al. Deep learning detects genetic alterations in cancer histology generated by adversarial networks. J Pathol. 2021;254(1):70–79. doi: 10.1002/path.5638
  • Ubaldi L, Valenti V, Borgese RF, et al. Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples. Phys Med. 2021;90:13–22. doi: 10.1016/j.ejmp.2021.08.015
  • Wodzinski M, Banzato T, Atzori M, et al. Training deep neural networks for small and highly heterogeneous MRI datasets for cancer grading. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1758–1761.
  • Zhu XL, Shen H-B, Sun H, et al. Improving segmentation and classification of renal tumors in small sample 3D CT images using transfer learning with convolutional neural networks. Int J Comput Assist Radiol Surg. 2022;17(7):1303–1311. doi: 10.1007/s11548-022-02587-2
  • Li DC, Liu CW, Hu SC. A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif Intell Med. 2011;52(1):45–52. doi: 10.1016/j.artmed.2011.02.001
  • Paul R, Hawkins S, Balagurunathan Y, et al. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography. 2016;2(4):388–395. doi: 10.18383/j.tom.2016.00211
  • Usman M, Zia T, Tariq A. Analyzing transfer learning of vision transformers for interpreting chest radiography. J Digit Imaging. 2022;35(6):1445–1462. doi: 10.1007/s10278-022-00666-z
  • Huang R-X, Zhou P-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Ther. 2020;5(1):60. doi: 10.1038/s41392-020-0150-x
  • Concato J, Peduzzi P, Holford TR, et al. Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol. 1995;48(12):1495–1501. doi: 10.1016/0895-4356(95)00510-2
  • Stanley K. Design of randomized controlled trials. Circulation. 2007;115(9):1164–1169. doi: 10.1161/CIRCULATIONAHA.105.594945
  • Shaikhina T, Khovanova NA. Handling limited datasets with neural networks in medical applications: a small-data approach. Artif Intell Med. 2017;75:51–63. doi: 10.1016/j.artmed.2016.12.003
  • Tasci E, Zhuge Y, Camphausen K, et al. Bias and class imbalance in oncologic data—towards inclusive and transferrable AI in large scale oncology data sets. Cancers (Basel). 2022;14(12):2897.
  • Candemir S, Nguyen XV, Folio LR, et al. Training strategies for radiology deep learning models in data-limited scenarios. Radiol. 2021;3(6):e210014. doi: 10.1148/ryai.2021210014
  • Lu J, Gong P, Ye J, et al. A survey on machine learning from few samples. Pattern Recognition. 2023;139:109480. doi: 10.1016/j.patcog.2023.109480
  • Roh Y, Heo G, Whang SE. A survey on data collection for machine learning: a big data-ai integration perspective. IEEE Trans Knowledge Data Eng. 2019;33(4):1328–1347. doi: 10.1109/TKDE.2019.2946162
  • Vabalas A, Gowen E, Poliakoff E, et al. Machine learning algorithm validation with a limited sample size. PLoS One. 2019;14(11):e0224365. doi: 10.1371/journal.pone.0224365
  • Lin LS, Hu SC, Lin YS, et al. A new approach to generating virtual samples to enhance classification accuracy with small data-a case of bladder cancer. Math Biosci Eng. 2022;19(6):6204–6233. doi: 10.3934/mbe.2022290
  • Hastie T, Tibshirani R, Friedman JH, et al. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. Stanford, California: Springer; 2009.
  • Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistics Surveys. 2010;4(none). doi: 10.1214/09-SS054
  • Tasci E, Jagasia S, Zhuge Y, et al. RadWise: a rank-based hybrid feature weighting and selection method for proteomic categorization of chemoirradiation in patients with Glioblastoma. Cancers (Basel). 2023;15(10):2672. doi: 10.3390/cancers15102672
  • Tasci E, Zhuge Y, Kaur H, et al. Hierarchical voting-based feature selection and ensemble learning model scheme for glioma grading with clinical and molecular characteristics. Int J Mol Sci. 2022;23(22):14155. doi: 10.3390/ijms232214155
  • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3(Mar):1157–1182.
  • Gokalp O, Tasci E, Ugur A. A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification. Expert Syst Appl. 2020;146:113176. doi: 10.1016/j.eswa.2020.113176
  • Muthukrishnan R, Rohini R. LASSO: a feature selection technique in predictive modeling for machine learning. In 2016 IEEE international conference on advances in computer applications (ICACA); Coimbatore, India. 2016. IEEE.
  • Sagi O, Rokach L. Ensemble learning: a survey. Wiley Interdisciplinary Reviews: data mining and knowledge discovery. 2018;8(4):e1249.
  • Tasci E, Uluturk C, Ugur A. A voting-based ensemble deep learning method focusing on image augmentation and preprocessing variations for tuberculosis detection. Neural Comput Appl. 2021;33(22):15541–15555. doi: 10.1007/s00521-021-06177-2
  • Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowledge Data Eng. 2009;22(10):1345–1359. doi: 10.1109/TKDE.2009.191
  • Van Engelen JE, Hoos HH. A survey on semi-supervised learning. Mach Learn. 2020;109(2):373–440. doi: 10.1007/s10994-019-05855-6
  • Wang Y, Yao Q, Kwok JT, et al. Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surveys. 2020;53(3):1–34. doi: 10.1145/3386252
  • Kairouz P, McMahan HB, Avent B, et al. Advances and open problems in federated learning. Found Trends Mach Learn. 2021;14(1–2):1–210. doi: 10.1561/2200000083
  • Ozaki S, Kaji S, Nawa K, et al. Training of deep cross-modality conversion models with a small data set, and their application in megavoltage CT to kilovoltage CT conversion. Med Phys. 2022;49(6):3769–3782. doi: 10.1002/mp.15626
  • Vittinghoff E, McCulloch CE. Relaxing the Rule of Ten Events per variable in logistic and cox regression. Am J Epidemiol. 2006;165(6):710–718. doi: 10.1093/aje/kwk052
  • Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–1379. doi: 10.1016/S0895-4356(96)00236-3
  • Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: part I – Continuous outcomes. Stat Med. 2019;38(7):1262–1275. doi: 10.1002/sim.7993
  • Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: part II - binary and time-to-event outcomes. Stat Med. 2019;38(7):1276–1296. doi: 10.1002/sim.7992
  • van Smeden M, de Groot JAH, Moons KGM, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16(1):163. doi: 10.1186/s12874-016-0267-3
  • Bellman RE. Adaptive control processes. Princeton: Princeton University Press; 1961.
  • Chen L. Curse of dimensionality. In: Liu L ÖZsu MT, editors. Encyclopedia of Database Systems. Boston (MA): Springer US; 2009. p. 545–546.
  • Gorban AN, Tyukin IY. Blessing of dimensionality: mathematical foundations of the statistical physics of data. Philos Trans A Math Phys Eng Sci. 2018;376(2118):20170237. doi: 10.1098/rsta.2017.0237
  • Anderson J, Goyal N, Rademacher L, et al. The more, the merrier: the blessing of dimensionality for learning large gaussian mixtures. J Mach Learn Res. 2013;35.
  • Mariano D. Classificação de indivíduos com base em duas características. 2022 Jun 3 [cited 2023 Jul 11]; Feature learning for classification of groups. Available from: https://commons.wikimedia.org/wiki/File:Aprendizagem_n%C3%A3o_supervisionada.png
  • Kathuria A. Intro to optimization in deep learning: gradient descent. 2023. 2018 [cited 2023 Jul 11]; Blessing of dimentionality. Goal of neural networks to reach global minima. Available from: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
  • Fgpacini. Diagram Of The Feature Learning Paradigm In Machine Learning For Application To Downstream Tasks. 2022 Oct 8 [cited 2023 Jul 11]; Diagram which explains the motivation and use of feature learning. Available from: https://commons.wikimedia.org/wiki/File:Feature_Learning_Diagram.png
  • Pestov V. Is the k-NN classifier in high dimensions affected by the curse of dimensionality? Comput Math Appl. 2013;65(10):1427–1437. doi: 10.1016/j.camwa.2012.09.011
  • Berisha V, Krantsevich C, Hahn PR, et al. Digital medicine and the curse of dimensionality. NPJ Digit Med. 2021;4(1):153. doi: 10.1038/s41746-021-00521-5
  • Pirrone G, Matrone F, Chiovati P, et al. Predicting local failure after partial prostate Re-irradiation using a dosiomic-based machine learning Model. JPM. 2022;12(9):1491. doi: 10.3390/jpm12091491
  • Carles M, Popp I, Starke MM, et al. FET-PET radiomics in recurrent glioblastoma: prognostic value for outcome after re-irradiation? Radiat Oncol. 2021;16(1):46. doi: 10.1186/s13014-020-01744-8
  • Boldrini L, Romano A, Chiloiro G, et al. Magnetic resonance guided SBRT reirradiation in locally recurrent prostate cancer: a multicentric retrospective analysis. (1748-717X (electronic)). 2023.
  • Cuccia F, Rigo M, Figlia V, et al. 1.5T MR-Guided Daily Adaptive Stereotactic Body Radiotherapy for Prostate Re-Irradiation: A Preliminary Report of Toxicity and Clinical Outcomes. Front Oncol. 2022 Apr 13;12:858740.
  • Ng J, Gregucci F, Pennell RT, et al. MRI-LINAC: A transformative technology in radiation oncology. Front Oncol. 2023 Jan 27;13:1117874
  • Lohmann P, Franceschi E, Vollmuth P, et al. Radiomics in neuro-oncological clinical trials. Lancet Digital Health. 2022;4(11):e841–e849. doi: 10.1016/S2589-7500(22)00144-3
  • Tran T, Luo W, Phung D, et al. A framework for feature extraction from hospital medical data with applications in risk prediction. BMC Bioinf. 2014;15(1):425. doi: 10.1186/s12859-014-0425-8
  • Lok BH, Jiang G, Gutiontov S, et al. Palliative head and neck radiotherapy with the RTOG 8502 regimen for incurable primary or metastatic cancers. Oral Oncol. 2015;51(10):957–62. doi: 10.1016/j.oraloncology.2015.07.011
  • Corry J, Peters LJ, Costa ID, et al. The ‘QUAD SHOT’—a phase II study of palliative radiotherapy for incurable head and neck cancer. Radiother Oncol. 2005;77(2):137–142. doi: 10.1016/j.radonc.2005.10.008
  • Gamez ME, AGARWAL M, HU KS, et al. Hypofractionated palliative radiotherapy with concurrent radiosensitizing chemotherapy for advanced head and neck cancer using the “QUAD-SHOT regimen”. Anticancer Res. 2017;37(2):685–691. doi: 10.21873/anticanres.11364
  • Toya R, Saito T, Yamaguchi K, et al. Hypofractionated palliative volumetric modulated arc radiotherapy with the Radiation Oncology study group 8502 “QUAD shot” regimen for incurable head and neck cancer. Radiat Oncol. 2020;15(1):123. doi: 10.1186/s13014-020-01548-w
  • Kamran SC, Harshman LC, Bhagwat MS, et al. Characterization of efficacy and toxicity after high-dose pelvic reirradiation with palliative intent for genitourinary second malignant neoplasms or local recurrences after full-dose radiation therapy in the pelvis: a high-volume cancer center experience. Adv Radiat Oncol. 2017;2(2):140–147. doi: 10.1016/j.adro.2017.01.001
  • Guren MG, Undseth C, Rekstad BL, et al. Reirradiation of locally recurrent rectal cancer: a systematic review. Radiother Oncol. 2014;113(2):151–157. doi: 10.1016/j.radonc.2014.11.021
  • Drodge CS, Ghosh S, Fairchild A. Thoracic reirradiation for lung cancer: a literature review and practical guide. Ann Palliat Med. 2014;3(2):75–91. doi: 10.3978/j.issn.2224-5820.2014.03.04
  • Zhao Z, Zhang K-N, Wang Q, et al. Chinese glioma genome atlas (CGGA): a comprehensive resource with functional genomic data from Chinese glioma patients. Int J Genomics Proteomics. 2021;19(1):1–12. doi: 10.1016/j.gpb.2020.10.005
  • Hudson TJ, Anderson W, Aretz A, et al. International network of cancer genome projects. Nature. 2010;464(7291):993–998.
  • Hutter C, Zenklusen JC. The cancer genome atlas: creating lasting value beyond its data. Cell. 2018;173(2):283–285. doi: 10.1016/j.cell.2018.03.042
  • Ko S, Choi J, Ahn J. GVES: machine learning model for identification of prognostic genes with a small dataset. Sci Rep. 2021;11(1):439. doi: 10.1038/s41598-020-79889-5
  • Kelly CJ, Karthikesalingam A, Suleyman M, et al. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. doi: 10.1186/s12916-019-1426-2