61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimal grounded inerter-based dynamic vibration absorber for controlling inertial force-induced vibrations in rotating machines

&

References

  • Argentini, T., Belloli, M., & Borghesani, P. (2015). A closed- form optimal tuning of mass dampers for one degree- of-freedom systems under rotating unbalance forcing. Journal of Vibration and Acoustics, 137(3), 034501. https://doi.org/10.1115/1.4029576
  • Asami, T., & Nishihara, O. (1999). Analytical and experimental evaluation of an air damped dynamic vibration absorber: Design optimizations of the three-element type model. Journal of Vibration and Acoustics, 121(3), 334e342. https://doi.org/10.1115/1.2893985
  • Baduidana, M., Kendo-Nouja, B., Kenfack-Jiotsa, A., & Nzengwa, R. (2021). Optimal design of a novel high-performance passive nontraditional inerterbased dynamic vibration absorber for enhancement vibration absorption. Asian Journal of Control, 24, 1–13. https://doi.org/10.1002/asjc.2700
  • Baduidana, M., & Kenfack-Jiotsa, A. (2020). Optimal design of inerter-based isolators minimizing the compliance and mobility transfer function versus harmonic and random ground acceleration excitation. Journal of Vibration and Control, 27(11–12), 1297–1310. https://doi.org/10.1177/1077546320940175
  • Baduidana, M., & Kenfack-Jiotsa, A. (2021). Optimum design for a novel inerter-based vibration absorber with an amplified inertance and grounded stiffness for enhanced vibration control. Journal of Vibration and Control, 28(19–20), 2502–2518. https://doi.org/10.1177/10775463211013221
  • Baduidana, M., & Kenfack-Jiotsa, A. (2022). Minimization of the primary structure response under random excitation using high-performance passive tuned mass damper ineter control configurations. Journal of Vibration Engineering & Technologies, 2022, 12–23. https://doi.org/10.1007/s42417-022-00825-0
  • Baduidana, M., & Kenfack-Jiotsa, A. (2023a). Parameters optimization of grounded dynamic vibration absorber with pendulum connected via the lever mechanism. Noise & Vibration Worldwide, 54(6), 297–306. https://doi.org/10.1177/09574565231179729
  • Baduidana, M., & Kenfack-Jiotsa, A. (2023b). Parameters optimization of three-element dynamic vibration absorber with inerter and grounded stiffness. Journal of Vibration and Control, 28(7–8), 864–881. https://doi.org/10.1177/1077546320985335
  • Barredo, E., Blanco, A., Abúndez, A., Vela, L. G., Meza, V., Cruz, R. H., & Mayén, J. (2018). Closed-form solutions for the optimal design of inerter-based dynamic vibration absorbers. International Journal of Mechanical Sciences, 144, 41–53. https://doi.org/10.1016/j.ijmecsci.2018.05.025
  • Barredo, E., Mendoza Larios, J. G., Colín, J., Mayén, J., Flores-Hernández, A. A., & Arias-Montiel, M. (2020). A novel high-performance passive nontraditional inerter-based dynamic vibration absorber. Journal of Sound and Vibration, 485, 115583. https://doi.org/10.1016/j.jsv.2020.115583
  • Barredo, E., Zhao, Z., Maz´on-Valadez, C., Larios, J. M., & Maldonado, I. A. (2023). A grounded inerter-based oscillating TMD for suppressing harmonic and random vibrations. International Journal of Mechanical Sciences, 254, 108438. https://doi.org/10.1016/j.ijmecsci.2023.108438
  • Boulder and Colorado. (1970). A new method of interpolation and smooth curve fitting based on local procedure. Journal of the Association for Computing Machinery, 17(4), 589–602. https://doi.org/10.1145/321607.321609
  • Chen, Q., Zhao, Z., Xia, Y., Pan, C., Luo, H., & Zhang, R. (2019). Comfort based floor design employing tuned inerter mass system. Journal of Sound and Vibration, 458, 143–157. https://doi.org/10.1016/j.jsv.2019.06.019
  • Den Hartog, J. P. (1956). Mechanical vibrations. McGraw-Hill.
  • Frahm, H. (1909). Device for damped vibration of bodies. US Patent No 989958.
  • Hu, Y., & Chen, M. Z. Q. (2015). Performance evaluation for inerter-based dynamic vibration absorbers. International Journal of Mechanical Sciences, 99, 297–307. https://doi.org/10.1016/j.ijmecsci.2015.06.003
  • Hu, Y., Chen, M. Z. Q., Shu, Z., & Huang, L. (2015). Analysis and optimization for inerter-based isolators via fixed-point theory and algebraic solution. Journal of Sound and Vibration, 346(1), 17–36. https://doi.org/10.1016/j.jsv.2015.02.041
  • Hu, Y., Wang, J., Chen, M. Z. Q., Li, Z., & Sun, Y. (2018). Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control. Engineering Structures, 177, 198–209. https://doi.org/10.1016/j.engstruct.2018.09.063
  • Ikago, K., Saito, K., & Inoue, N. (2012). Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthquake Engineering & Structural Dynamics, 41(3), 453–474. https://doi.org/10.1002/eqe.1138
  • Inman, D. J. (2008). Engineering vibration (3rd ed.). Prentice-Hall.
  • Islam, N. U., & Jangid, R. S. (2022). Optimum parameters of tuned inerter damper for damped structures. Journal of Sound and Vibration, 537, 117218. https://doi.org/10.1016/j.jsv.2022.117218
  • José Gabriel, M.-L., Barredo-Hernández, E., & Maldonado-Bravo, I. A. (2022). Non-traditional dynamic vibration absorber for controlling inertial force. CULCYT Cultura Científica y Tecnológica, 19(2), 4–11. https://doi.org/10.20983/culcyt.2022.2.2.1
  • Lazar, I. F., Neild, S. A., & Wagg, D. J. (2014). Using an inerter-based device for structural vibration suppression. Earthquake Engineering & Structural Dynamics, 43(8), 1129–1147. https://doi.org/10.1002/eqe.2390
  • Lazar, I. F., Neild, S. A., & Wagg, D. J. (2016). Vibration suppression of cables using tuned inerter dampers. Engineering Structures, 122, 62–71. https://doi.org/10.1016/j.engstruct.2016.04.017
  • Liting, W., & Wang, K. (2023). Optimization design and stability analysis for a new class of inerter-based dynamic vibration absorbers with a spring of negative stiffness. Journal of Vibration and Control , 1–15. https://doi.org/10.1177/10775463231151724.
  • MathWorks. (2016). MATLAB R2016b-academic use. The Mathworks Inc.
  • Nishihara, O., & Asami, T. (2002). Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors. Journal of Vibration and Acoustics, 124(4), 576–582. https://doi.org/10.1115/1.1500335
  • Ormondroyd, J., & Den Hartog, J. P. (1928). The theory of the dynamic vibration absorber. ASME Journal of Applied Mechanics, 50(7), 9–22. https://doi.org/10.1115/1.4058553
  • Ren, M. Z. (2001). A variant design of the dynamic vibration absorber. Journal of Sound and Vibration, 245(4), 762e770. https://doi.org/10.1006/jsvi.2001.3564
  • Smith, M. C. (2002). Synthesis of mechanical networks: The inerter.IEEE. IEEE Transactions on Automatic Control, 47(10), 1648–1662. https://doi.org/10.1109/TAC.2002.803532
  • Wang, X. R., Liu, X., Shan, Y., Shen, Y., & Tian, H. (2018). Analysis and optimization of the novel inerter-based dynamic vibration absorbers. Institute of Electrical and Electronics Engineers Access, 99, 1–1. https://doi.org/10.1109/ACCESS.2018.2844086
  • Wang, X. R., Shen, Y. J., & Yang, S. P. (2016). H∞ optimization of the grounded three-element type dynamic vibration absorber. Chinese Journal of Dynamical and Control, 14(5), 448e453.
  • Warburton, G. B. (1982). Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering Structure Dynamics, 10(3), 381–401. https://doi.org/10.1002/eqe.4290100304
  • Zhao, Z., Hu, X., Zhang, R., & Chen, Q. (2022). Analytical optimization of the tuned viscous mass damper under impulsive excitations. International Journal of Mechanical Sciences, 228, 107472. https://doi.org/10.1016/j.ijmecsci.2022.107472
  • Zhao, Z., Zhang, R., Pan, C., Chen, Q., & Jiang, Y. (2020). Input energy reduction principle of structures with generic tuned mass damper inerter. Structural Control and Health Monitoring, 28(1), e2644. https://doi.org/10.1002/stc.2644
  • Zhou, S., Jean-Mistral, C., & Chesne, S. (2019). Optimal design of an inerter- based dynamic vibration absorber connected to ground. Journal of Vibration and Acoustics, 141(5), 141/051017–11. https://doi.org/10.1115/1.4043945

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.