1,461
Views
3
CrossRef citations to date
0
Altmetric
Articles

Polycondensation of kraft-lignin toward value-added biomaterials: carbon aerogels

, &
Pages 19-28 | Received 30 Nov 2020, Accepted 01 Dec 2020, Published online: 03 Feb 2021

References

  • Kamm B, Gruber PR, Kamm M. Ullmann’s encyclopedia of industrial chemistry. Vol. 4. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 1–38.
  • Schorr D, Diouf PN, Stevanovic T. Evaluation of industrial lignins for biocomposites production. Ind Crops Prod. 2014;52:65–73.
  • Ponnusamy VK, Nguyen DD, Dharmaraja J, et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol. 2019;271:462–472.
  • Rinaldi R, Jastrzebski R, Clough MT, et al. Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angew Chem. 2016;128:8296–8354.
  • Laurichesse S, Avérous L. Chemical modification of lignins: towards biobased polymers. Prog Polym Sci. 2014;39(7):1266–1290.
  • Doherty WOS, Mousavioun P, Fellows CM. Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod. 2011;33(2):259–276.
  • Gellerstedt G. Softwood kraft lignin: raw material for the future. Ind Crops Prod. 2015;77:845–854.
  • Alekhina M, Ershova O, Ebert A, et al. Softwood kraft lignin for value-added applications: fractionation and structural characterization. Ind Crops Prod. 2015;66:220–228.
  • Mirzaeian M, Hall PJ. The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J Mater Sci. 2009;44(10):2705–2713.
  • Dong X-C, Xu H, Wang X-W, et al. 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano. 2012;6(4):3206–3213.
  • Gui X, Wei J, Wang K, et al. Carbon nanotube sponges. Adv Mater. 2010;22(5):617–621.
  • Buratti C, Moretti E, Belloni E, et al. Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustainability. 2014;6(9):5839–5852.
  • Zuo L, Zhang Y, Zhang L, et al. Polymer/carbon-based hybrid aerogels: preparation, properties and applications. Materials (Basel). 2015;8(10):6806–6848.
  • Lee Y, Yoon JS, Suh DJ, et al. 5-hydroxymethylfurfural as a potential monomer for the preparation of carbon aerogel. Mater Chem Phys. 2012;136(2–3):837–844.
  • Chen F, Min X, Wang L, et al. Preparation and characterization of organic aerogels from a lignin - resorcinol - formaldehyde copolymer. BioResources. 2011;6(2):1262–1272.
  • Pekala RW. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci. 1989;24(9):3221–3227.
  • Pekala RW, Farmer JC, Alviso CT, et al. Carbon aerogels for electrochemical applications. J Non-Crystalline Solids. 1998;225:74–80.
  • Moreno-Castilla C, Maldonado-Hódar FJ. Carbon aerogels for catalysis applications: an overview. Carbon. 2005;43(3):455–465.
  • Grishechko LI, Amaral-Labat G, Szczurek A, et al. Lignin–phenol–formaldehyde aerogels and cryogels. Microporous Mesoporous Mater. 2013;168:19–29.
  • Yang BS, Kang K-Y, Jeong M-J. Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor. J Korean Phys Soc. 2017;71(8):478–482.
  • Grajales EJ, Alarcón EA, Villa AL. Kinetics of depolymerization of paraformaldehyde obtained by thermogravimetric analysis. Thermochim acta. 2015;609:49–60.
  • Martin RJL. The mechanism of the Cannizzaro reaction of Formaldehyde. Aust J Chem. 1954;7:335.
  • Patton A, ed. Formaldehyde. Synthesis, applications, and potential health effects. New York: Nova Science Publishers Inc; 2015.
  • Zhang SQ, Wang J, Shen J, et al. The investigation of the adsorption character of carbon aerogels. Nanostruct Mater. 1999;11(3):375–381. http://www.sciencedirect.com/science/article/pii/S0965977399000549
  • Zanto EJ, Al-Muhtaseb SA, Ritter JA. Sol−gel-derived carbon aerogels and xerogels. Ind Eng Chem Res. 2002;41:3151–3162. https://doi.org/https://doi.org/10.1021/ie020048g