47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of antihyperlipidemic drug loaded β-CD-based microparticulate carrier systems: tuning and optimization

, , ORCID Icon, , , , , , , , & show all
Pages 1438-1463 | Received 29 Jan 2024, Accepted 02 Apr 2024, Published online: 14 Apr 2024

References

  • Perrut, M.; Jung, J.; Leboeuf, F. Enhancement of Dissolution Rate of Poorly-Soluble Active Ingredients by Supercritical Fluid Processes Part 1: Micronization of Neat Particles. Int. J. Pharm. 2005, 288(1), 3–10. DOI: 10.1016/j.ijpharm.2004.09.007.
  • Edward, K. H.; Li, D. Drug-Like Properties: Concept, Structure, Design, and Methods, from ADME to Toxicity Optimization; UK: 2008.
  • Kumar, A.; Sahoo, S. K.; Padhee, K.; Kochar, P. S.; Sathapathy, A.; Pathak, N. Review on Solubility Enhancement Techniques for Hydrophobic Drugs. Pharm. Glob. 2011, 3, 1–7.
  • Martin, P. D.; Mitchell, P. D.; Schneck, D. W. Pharmacodynamic Effects and Pharmacokinetics of a New HMG-CoA Reductase Inhibitor, Rosuvastatin, After Morning or Evening Administration in Healthy Volunteers. J. Clin. Pharmacol. 2002, 54(5), 472–477. DOI: 10.1046/j.1365-2125.2002.01688.x.
  • Schwartz, G. G.; Bolognese, M. A.; Tremblay, B. P.; Caplan, R.; Hutchinson, H.; Raza, A.; Cressman, M. Efficacy and Safety of Rosuvastatin and Atorvastatin in Patients with Hypercholesterolemia and a High Risk of Coronary Heart Disease: A Randomized, Controlled Trial. Am. Heart J. 2004, 148(1), 105. DOI: 10.1016/j.ahj.2004.01.020.
  • Ying, L.; Sturekb, M.; Park, K. Microparticles Produced by the Hydrogel Template Method for Sustained Drug Delivery. Int. J. Pharm. 2014, 461(1–2), 258–269. DOI: 10.1016/j.ijpharm.2013.11.058.
  • Karashima, M.; Sano, N.; Yamamoto, S.; Arai, Y.; Yamamoto, K.; Amano, N.; Ikeda, Y. Enhanced Pulmonary Absorption of Poorly Soluble Itraconazole by Micronized Cocrystal Dry Powder Formulations. Eur. J. Pharm. Biopharm. 2017, 115, 65–72. DOI: 10.1016/j.ejpb.2017.02.013.
  • Seo, B.; Kim, T.; Park, H. J.; Kim, J.-Y.; Lee, K. D.; Lee, J. M.; Lee, Y.-W. Extension of the Hansen Solubility Parameter Concept to the Micronization of Cyclotrimethylene Trinitramine Crystals by Super Critical Anti-Solvent Process. J. Supercrit Fluids. 2016, 111, 112–120. DOI: 10.1016/j.supflu.2016.01.015.
  • Mohammadian, M.; Salami, M.; Momen, S.; Alavi, F.; Emam-Djomeh, Z.; Moosavi-Movahedi, A. A. Enhancing the Aqueous Solubility of Curcumin at Acidic Condition through the Complexation with Whey Protein Nanofibrils. Food Hydrocoll. 2019, 87, 902–914. DOI: 10.1016/j.foodhyd.2018.09.001.
  • Xu, W.; Sun, Y.; Du, L.; Chistyachenko, Y. S.; Dushkin, A. V.; Su, W. Investigations on Solid Dispersions of Valsartan with Alkalizing Agents: Preparation, Characterization and Physicochemical Properties. J. Drug Deliv. Sci. Technol. 2018, 44, 399–405. DOI: 10.1016/j.jddst.2018.01.012.
  • Choi, J.-S.; Kwon, S.-H.; Lee, S.-E.; Jang, W. S.; Byeon, J. C.; Jeong, H. M.; Park, J.-S. Use of Acidifier and Solubilizer in Tadalafil Solid Dispersion to Enhance the in vitro Dissolution and Oral Bioavailability in Rats. Int. J. Pharm. 2017, 526(1–2), 77–87. DOI: 10.1016/j.ijpharm.2017.04.056.
  • Carswell, C. I.; Plosker, G. L.; Jarvis, B. D. Rosuvastatin. Drugs. 2002, 62(14), 2075–2085. DOI: 10.2165/00003495-200262140-00008.
  • Tran, P.; Pyo, Y. C.; Kim, D. H.; Lee, S. E.; Kim, J. K.; Park, J. S. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics. 2019, 11(3), 132. DOI: 10.3390/pharmaceutics11030132.
  • Neelam, S.; Mamta, K. Micellar Solubilization of Some Poorly Soluble Antidiabetic Drugs: A Technical Note. AAPS PharmScitech. 2008, 9(2), 431–436. DOI: 10.1208/s12249-008-9057-5.
  • Patil, M. P.; Naresh, G. J. Preparation and Characterization of Gliclazide-Polyethylene Glycol 4000 Solid Dispersions. Acta. Pharm. 2009, 59(1), 57–65. DOI: 10.2478/v10007-009-0001-3.
  • Wu, Q.; He, Z.; Wang, X.; Zhang, Q.; Wei, Q.; Ma, S.; Ma, C.; Li, J.; Wang, Q. Cascade Enzymes within Self-Assembled Hybrid Nanogel Mimicked Neutrophil Lysosomes for Singlet Oxygen Elevated Cancer Therapy. Nat. Commun. 2019, 10(1), 240. DOI: 10.1038/s41467-018-08234-2.
  • Fang, Y.; Tan, J.; Lim, S.; Soh, S. Rupturing Cancer Cells by the Expansion of Functionalized Stimuli-Responsive Hydrogels. NPG Asia Mater. 2018, 10(2), e465–e465. DOI: 10.1038/am.2017.232.
  • Mahmood, A.; Sarfraz, M. R.; Asif, M. Hydrogel Microparticles As an Emerging Tool in Pharmaceutical Field: A Review. Adv. Polym. Technol. 2016, 35(2), 121–128. DOI: 10.1002/adv.21535.
  • Biswal, S.; Sahoo, J.; Murthy, P. N.; Giradkar, R. P.; Avari, J. G. Enhancement of Dissolution Rate of Gliclazide using Solid Dispersions with Polyethylene Glycol 6000. AAPS PharmScitech. 2008, 9(2), 563–570. DOI: 10.1208/s12249-008-9079-z.
  • Shah, T. J.; Amin, A. F.; Parikh, J. R.; Parikh, R. H. Process Optimization and Characterization of Poloxamer Solid Dispersions of a Poorly Water-Soluble Drug. AAPS PharmScitech. 2007, 8(2), E18–E24. DOI: 10.1208/pt0802029.
  • Schachter, M. Chemical, Pharmacokinetic and Pharmacodynamic Properties of Statins: An Update. Fundam. Clin. Pharmacol. 2005, 19(1), 117–125. DOI: 10.1111/j.1472-8206.2004.00299.x.
  • Sarfraz, R. M.; Ahmad, M.; Mahmood, A.; Akram, M. R.; Abrar, A. Development of β-Cyclodextrin-Based Hydrogel Microparticles for Solubility Enhancement of Rosuvastatin: An in vitro and in vivo Evaluation. Drug Des. Devel. Ther. 2017, Volume 11, 3083–3096. DOI: 10.2147/DDDT.S143712.
  • Zafar, N.; Mahmood, A.; Sarfraz, R. M.; Ijaz, H.; Ashraf, M. U.; Mehr, S. Facile Synthesis of β-Cyclodextrin-Cyclophosphamide Complex-Loaded Hydrogel for Controlled Release Drug Delivery. Polym. Bull. 2023, 80(10), 10939–10971. DOI: 10.1007/s00289-022-04567-7.
  • Sarfraz, R. M.; Ahmad, M.; Mahmood, A.; Ijaz, H. Development, in vitro and in vivo Evaluation of pH-Responsive β-CD-Comethacrylic Acid-Crosslinked Polymeric Microparticulate System for Solubility Enhancement of Rosuvastatin Calcium. Polym.-Plast. Technol. Eng. 2018, 57(12), 1175–1187. DOI: 10.1080/03602559.2017.1373401.
  • Shashank, T.; Satish, K. M. N.; Ashwati, P. Formulation and Characterization of 5-Fluorouracil Enteric Coated Nanoparticles for Sustained and Localized Release in Treating Colorectal Cancer. SPJ. 2015, 23(3), 308–314. DOI: 10.1016/j.jsps.2014.11.010.
  • Goswami, S.; Sarkar, M. F. Fluorescence, FTIR and 1 H NMR Studies of the Inclusion Complexes of the Painkiller Lornoxicam with β-, γ-Cyclodextrins and Their Hydroxy Propyl Derivatives in Aqueous Solutions at Different pHs and in the Solid State. New. J. Chem. 2018, 42(18), 15146–15156. DOI: 10.1039/C8NJ03093F.
  • Yasmin, T.; Mahmood, A.; Farooq, M.; Rehman, U.; Sarfraz, R. M.; Ijaz, H.; Benguerba, Y. Quince Seed mucilage/β-Cyclodextrin/mmt-Na±co-Poly (Methacrylate) Based pH-Sensitive Polymeric Carriers for Controlled Delivery of Capecitabine. Int. J. Biol. Macromol. 2023, 253, 127032. DOI: 10.1016/j.ijbiomac.2023.127032.
  • Rehman, U.; Sarfraz, R. M.; Mahmood, A.; Akbar, S.; Altyar, E.; Khinkar, A.; Gad, R. M. H.A. pH-Responsive Hydrogels for the Delivery of Capecitabine: Development, Optimization and Pharmacokinetic Studies. Gels. 2022, 8(12), 775. DOI: 10.3390/gels8120775.
  • Rehman, U.; Sarfraz, R. M.; Mahmood, A.; Mahmood, T.; Batool, N.; Haroon, B.; Benguerba, Y. Tamarind/β-CD-G-Poly (MAA) pH Responsive Hydrogels for Controlled Delivery of Capecitabine: Fabrication, Characterization, Toxicological and Pharmacokinetic Evaluation. J. Polym. Res. 2023, 30(1), 41. DOI: 10.1007/s10965-022-03422-7.
  • Pourjavadi, A.; Ghasemzadeh, H.; Mojahedi, F. Swelling Properties of CMC‐G‐Poly (AAm‐Co‐AMPS) Superabsorbent Hydrogel. J. Appl. Polym. Sci. 2009, 113(6), 3442–3449. DOI: 10.1002/app.30094.
  • Khalid, Q.; Ahmad, M.; Minhas, M. U. Synthesis of β-Cyclodextrin Hydrogel Nanoparticles for Improving the Solubility of Dexibuprofen: Characterization and Toxicity Evaluation. Drug Dev. Indus. Pharm. 2017, 43(11), 1873–1884. DOI: 10.1080/03639045.2017.1350703.
  • Shabir, F.; Mahmood, A.; Zafar, N.; Zaman, M.; Sarfraz, R. M.; Ijaz, H. Novel Black Seed Polysaccharide Extract-g-Poly (Acrylate) pH-Responsive Hydrogel Nanocomposites for Safe Oral Insulin Delivery: Development, In Vitro, In Vivo and Toxicological Evaluation Pharmaceutics. 2022, 15(1), 62. DOI: 10.3390/pharmaceutics15010062.
  • Ijaz, H.; Tulain, U. R.; Qureshi, J. Formulation and in vitro Evaluation of pH-Sensitive Cross-Linked Xanthan Gum-Grafted Acrylic Acid Copolymer for Controlled Delivery of Perindopril Erbumine (PE). Polym.-Plast. Technol. Eng. 2018, 57(5), 459–470. DOI: 10.1080/03602559.2017.1320722.
  • Goyal, U.; Arora, R.; Aggarwal, G. Formulation Design and Evaluation of a Self-Microemulsifying Drug Delivery System of Lovastatin. Acta Pharm. 2012, 62(3), 357–370. DOI: 10.2478/v10007-012-0022-1.
  • Patel, M.; Tekade, A.; Gattani, S.; Surana, S. Solubility Enhancement of Lovastatin by Modified Locust Bean Gum Using Solid Dispersion Techniques. AAPS PharmScitech. 2008, 9(4), 1262–1269. DOI: 10.1208/s12249-008-9171-4.
  • Rachmawati, H.; Edityaningrum, C. A.; Mauludin, R. Molecular Inclusion Complex of Curcumin–Β-cyclodextrin Nanoparticle to Enhance Curcumin Skin Permeability from Hydrophilic Matrix Gel. AAPS PharmScitech. 2013, 14(4), 1303–1312. DOI: 10.1208/s12249-013-0023-5.
  • Mahmood, A.; Sharif, A.; Muhammad, F.; Sarfraz, R. M.; Abrar, M. A.; Qaisar, M. N.; Zaman, M. development and in vitro Evaluation of (β-Cyclodextrin-G-Methacrylic Acid)/na+-Montmorillonite Nanocomposite Hydrogels for Controlled Delivery of Lovastatin. IJN. 2019, 14, 5397–5413. DOI: 10.2147/IJN.S209662.
  • Suresh, G.; Manjunath, K.; Venkateswarlu, V.; Satyanarayana, V. Preparation, Characterization, and in vitro and in vivo Evaluation of Lovastatin Solid Lipid Nanoparticles. AAPS PharmScitech. 2007, 8(1), E162–E170. DOI: 10.1208/pt0801024.
  • Guan, Y.; Yu, C.; Zang, Z.; Wan, X.; Naeem, A.; Zhang, R.; Zhu, W. Chitosan/Xanthan Gum-Based (Hydroxypropyl Methylcellulose-Co-2-Acrylamido-2-Methylpropane Sulfonic Acid) Interpenetrating Hydrogels for Controlled Release of Amorphous Solid Dispersion of Bioactive Constituents of Pueraria Lobatae. Int. J. Biol. Macromol. 2023, 224, 380–395. DOI: 10.1016/j.ijbiomac.2022.10.131.
  • Venkatesh, G.; Saravanan, J.; Rajendiran, N. Cyclodextrin-Covered Organic Microrods and Microsheets Derived from Supramolecular Self Assembly of 2, 4-Dihydroxyazobenzene and 4-Hydroxyazobenzene Inclusion Complexes. Bull. Chem. Soc. Jpn. 2014, 87(2), 283–293. DOI: 10.1246/bcsj.20130255.
  • Xu, S.; Li, H.; Ding, H.; Fan, Z.; Pi, P.; Cheng, J.; Wen, X. Allylated Chitosan-Poly (N-Isopropyl Acrylamide) Hydrogel Based on a Functionalized Double Network for Controlled Drug Release. Carbohyd. Polym. 2019, 214, 8–14. DOI: 10.1016/j.carbpol.2019.03.008.
  • Patel, R. P.; Patel, M. M. Preparation and Evaluation of Inclusion Complex of Lipid-Lowering Drug Lovastatin with β-Cyclodextrin. Dhaka Univ J Pharm Sci. 2007, 6(1), 25–36. DOI: 10.3329/dujps.v6i1.340.
  • Ficarra, R.; Ficarra, P.; Di Bella, M. R.; Raneri, D.; Tommasini, S.; Calabro, M. L.; Rustichelli, C. Study of β-blockers/β-Cyclodextrins Inclusion Complex by NMR, DSC, X-Ray and SEM Investigation. J. Pharm. Biomed. Anal. 2000, 23(1), 33–40. DOI: 10.1016/S0731-7085(00)00261-2.
  • Rao, M.; Mandage, Y.; Thanki, K.; Bhise, S. Dissolution Improvement of Simvastatin by Surface Solid Dispersion Technology. Diss. Technol. 2010, 17(2), 27–34. DOI: 10.14227/DT170210P27.
  • Ijaz, H.; Tulain, U. R.; Azam, F.; Qureshi, J. Thiolation of Arabinoxylan and its Application in the Fabrication of pH-Sensitive Thiolated Arabinoxylan Grafted Acrylic Acid Copolymer. Drug Dev. Indus. Pharm. 2019, 45(5), 754–776. DOI: 10.1080/03639045.2019.1569041.
  • Wang, J.; Guo, Z.; Xiong, J.; Wu, D.; Li, S.; Tao, Y.; Qin, Y.; Kong, Y. Facile Synthesis of Chitosan-Grafted Beta-Cyclodextrin for Stimuli-Responsive Drug Delivery. Int J Biol Macromol. 2019, 125, 941–947. DOI: 10.1016/j.ijbiomac.2018.12.150.
  • Eleamen, G. R.; Costa, S. C. D.; Lima-Neto, R. G.; Neves, R. P.; Rolim, L. A.; Rolim-Neto, P. J.; Moura, R. O.; Aquino, T. M. D.; Bento, E. S.; Scotti, M. T., et al. Improvement of Solubility and Antifungal Activity of a New Amino Thiophene Derivative by Complexation with 2-Hydroxypropyl-β-Cyclodextrin. J. Braz. Chem. Soc. 2017, 28, 116–125. DOI: 10.5935/0103-5053.20160153.
  • Anjani, Q. K.; Volpe-Zanutto, F.; Hamid, K. A.; Sabri, A. H. B.; Moreno-Castellano, N.; Gaitán, X. A.; Donnelly, R. F. Primaquine and Chloroquine Nano-Sized Solid Dispersion-Loaded Dissolving Microarray Patches for the Improved Treatment of Malaria Caused by Plasmodium vivax. J. Controlled Release. 2023, 361, 385–401. DOI: 10.1016/j.jconrel.2023.08.009.
  • Shilpi, K.; Ganesh, T. B.; Prashant, B. M.; Shaila, L. Enhancement of Aqueous Solubility and Oral Bioavailability of Nelfinavir by Complexation with β- Cyclodextrin. Trop. J Pharm. Res. 2015, 14(8), 1333–1340. DOI: 10.4314/tjpr.v14i8.3.
  • Gong, C. Y.; Shi, S.; Dong, P.; Yang, W. B.; Qi, X. R.; Guo, G.; Gu, Y. C.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y. Biodegradable in situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive PCL–PEG–PCL Hydrogel: Part 1—Synthesis, Characterization, and Acute Toxicity Evaluation. J. Pharm. Sci. 2009, 98(12), 4684–4694. DOI: 10.1002/jps.21780.
  • Ijaz, H.; Tulain, U. R. Development of Interpenetrating Polymeric Network for Controlled Drug Delivery and Its Evaluation. Int. J. Polym. Mater. Polym. Biomater. 2019, 68(18), 1099–1107. DOI: 10.1080/00914037.2018.1534110.
  • Yadava, S. K.; Naik, J. B.; Patil, J. S.; Mokale, V. J.; Singh, R. Enhanced Solubility and Bioavailability of Lovastatin Using Stabilized Form of Self-Emulsifying Drug Delivery System. Colloids Surf. A Physicochem. Eng. Aspects. 2015, 481, 63–71. DOI: 10.1016/j.colsurfa.2015.04.026.
  • Minhas, M. U. Synthesis and Characterization of Biodegradable Hydrogels for Oral Delivery of 5-Fluorouracil Targeted to Colon: Screening with Preliminary in vivo Studies. Adv Polym Technol. 2018, 37(1), 221–229.
  • Firyal, M. A.; Hameed, M. A. Controlled Drug Release of Grafted Pectin. J Drug Deliv Ther. 2018, 8(5–s), 215–222. DOI: 10.22270/jddt.v8i5-s.1953.
  • Bashir, S.; Zafar, N.; Lebaz, N.; Mahmood, A.; Elaissari, A. Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia. Processes. 2020, 8(11), 1350. DOI: 10.3390/pr8111350.
  • Azam, F.; Ijaz, H.; Qureshi, J. Functionalized Cross-Linked Interpenetrating Polymeric Network for pH-Responsive Colonic Drug Delivery. Int. J. Polym. Mater. Polym. Biomater. 2021, 70(9), 646–655. DOI: 10.1080/00914037.2020.1740995.
  • Safar, N.; Mahmood, A.; Sarfraz, R. M. Facile Synthesis of β-Cyclodextrin-Cyclophosphamide Complex-Loaded Hydrogel for Controlled Release Drug Delivery. Polym. Bull. 2023, 80(10), 10939–10971.
  • Mahmood, A.; Ahmad, M.; Sarfraz, R. M.; Minhas, M. U. β-CD Based Hydrogel Microparticulate System to Improve the Solubility of Acyclovir: Optimization Through In-Vitro, In-Vivo and Toxicological Evaluation. J. Drug Delivery Sci. Technol. 2016, 36, 75–88. DOI: 10.1016/j.jddst.2016.09.005.
  • Malipeddi, V. R.; Dua, K.; Awasthi, R. Development and Characterization of Solid Dispersion-Microsphere Controlled Release System for Poorly Water-Soluble Drug. Drug Delivery Transl. Res. 2016, 6(5), 540–550. DOI: 10.1007/s13346-016-0307-x.
  • Gu, W.; Liu, Y. Characterization and Stability of Beta-Acids/hydroxypropyl-β-Cyclodextrin Inclusion Complex. J. Mol. Struct. 2020, 1201, 127159. DOI: 10.1016/j.molstruc.2019.127159.
  • Abbas, Z. S.; Sulaiman, G. M.; Jabir, M. S.; Mohammed, S. A.; Khan, R. A.; Mohammed, H. A.; Al-Subaiyel, A. Galangin/β-Cyclodextrin Inclusion Complex As a Drug-Delivery System for Improved Solubility and Biocompatibility in Breast Cancer Treatment. Molecules. 2022, 27(14), 4521. DOI: 10.3390/molecules27144521.
  • Arya, P.; Raghav, N. In-Vitro Studies of Curcumin-β-Cyclodextrin Inclusion Complex As Sustained Release System. J. Mol. Struct. 2021, 1228, 129774. DOI: 10.1016/j.molstruc.2020.129774.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.