223
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanocomposite polymers and their applications for electromagnetic interference shielding

, , , , , , , , , , & show all
Pages 1514-1533 | Received 31 Dec 2023, Accepted 05 Apr 2024, Published online: 13 Apr 2024

References

  • Stein, Y.; Hänninen, O.; Huttunen, P.; Ahonen, M.; Ekman, R. Electromagnetic Radiation – Environmental Indicators in Our Surroundings. In: Armon, R., Hänninen, O. (eds) Environmental Indicators. Springer, Dordrecht. 2015. DOI: 10.1007/978-94-017-9499-2_56
  • Bosch-Capblanch, X.; Esu, E.; Dongus, S.; Oringanje, C. M.; Jalilian, H.; Eyers, J.; Oftedal, G.; Meremikwu, M.; Röösli, M. The Effects of Radiofrequency Electromagnetic Field Exposure on Human Self-Reported Symptoms: A Protocol for a Systematic Review of Human Experimental Studies. Environ. Int. 2022, 158, 106953. DOI: 10.1016/j.envint.2021.106953.
  • Magiera, A.; Solecka, J. Mobile Telephony and Its Effects on Human Health. Roczniki Panstwowego Zakladu Higieny. 2019, 70, 225–234. DOI: 10.32394/rpzh.2019.0073.
  • Deniz, O. G.; Kaplan, S.; Selçuk, M. B.; Terzi, M.; Altun, G.; Yurt, K. K.; Aslan, K.; Davis, D. Effects of Short and Long-Term Electromagnetic Field Exposure on the Human Hippocampus. J. Microsc. Ultrastruct. 2017, 5(4), 191–197. DOI: 10.1016/j.jmau.2017.07.001.
  • Nakatani-Enomoto, S.; Yamazaki, M.; Nishiura, K.; Enomoto, H.; Ugawa, Y. Effects of Electromagnetic Fields from Long-Term Evolution on Awake Electroencephalogram in Healthy Humans. Neurosci. res. 2020, 156, 102–107. DOI: 10.1016/j.neures.2020.01.010.
  • Gasmelseed, A.; Yunus, J. The Effects of Metamaterial on Electromagnetic Field Absorption Characteristics of Human Eye Tissues. Prog. Biophys. Mol. Biol. 2014, 114(1), 8–12. DOI: 10.1016/j.pbiomolbio.2013.10.004.
  • Samaila, B.; Sagagi, Y. M.; Tampul, H. M. Exposure and Biological Impacts Assessment of Non-Ionizing Electro-Magnetic Radiation. Sci Set J. Phys. 2023, 2, 11.
  • Jayaraju, N.; Kumar, M. P.; Sreenivasulu, G.; Prasad, T. L.; Lakshmanna, B.; Nagalaksmi, K.; Madakka, M. Mobile Phone and Base Stations Radiation and Its Effects on Human Health and Environment: A Review. Sustainable Technol. Entrep. 2023, 2(2), 100031. DOI: 10.1016/j.stae.2022.100031.
  • Zheng, R.; Zhang, X.; Gao, Y.; Gao, D.; Gong, W.; Zhang, C.; Dong, G.; Li, Z. Biological Effects of Exposure to 2650 MHz Electromagnetic Radiation on the Behavior, Learning, and Memory of Mice. Brain Behav. 2023, 13(6), e3004. (n.d.). DOI: 10.1002/brb3.3004.
  • Hou, X.; Feng, X.; Jiang, K.; Zheng, Y.; Liu, J.; Wang, M. Recent Progress in Smart Electromagnetic Interference Shielding Materials. J. Mater. Sci. Technol. 2024, 186, 256–271. DOI: 10.1016/j.jmst.2024.01.008.
  • Abdalla, I.; Cai, J.; Lu, W.; Yu, J.; Li, Z.; Ding, B. Recent Progress on Electromagnetic Wave Absorption Materials Enabled by Electrospun Carbon Nanofibers. Carbon. 2023, 213, 118300. DOI: 10.1016/j.carbon.2023.118300.
  • Yao, P.; Li, X.; Zeng, Y.; Ma, K.; Zhang, X.; Li, M.; Zuo, J.; Li, T.; Li, L.; Li, C., et al. Electromagnetic Wave Absorption and Shielding Performances and Mechanisms of a Porous TI3ALC2/SIC Gradient Composite. ACS Appl. Electron. Mater. 2023, 5(3), 1558–1565. DOI: 10.1021/acsaelm.2c01595.
  • Lumnitzer, E.; Jurgovska, E. L.; Andrejiova, M.; Kralikova, R. Application of Metal Shielding Materials to Protect Buildings Occupants from Exposure to the Electromagnetic Fields. Materials (Basel). 2023, 16(15), 5438. DOI: 10.3390/ma16155438.
  • Kumari, S.; Dalal, J.; Kumar, V.; Kumar, A.; Ohlan, A. Emerging Two-Dimensional Materials for Electromagnetic Interference Shielding Application. Int. J. Mol. Sci. 2023, 24(15), 12267. DOI: 10.3390/ijms241512267.
  • Oliveira, F. M.; Azadmanjiri, J.; Wang, X.; Yu, M.; Sofer, Z. Structure Design and Processing Strategies of MXene-Based Materials for Electromagnetic Interference Shielding. Small Methods. 2023, 7(7), e2300112. DOI: 10.1002/smtd.202300112.
  • Atay, M.; Duran Kaya, D.; Ülker, A. Development of Electromagnetic Shielding Composites Reinforced with Nonwovens Produced from Recycled Fibers. Polymers. 2023, 15(22), 15, 4469. DOI: 10.3390/polym15224469.
  • Liu, J.; Yu, M. Y.; Yu, Z. Z.; Nicolosi, V. Design and Advanced Manufacturing of Electromagnetic Interference Shielding Materials. Mater. Today. 2023, 66, 245–272. DOI: 10.1016/j.mattod.2023.03.022.
  • Lee, J. S.; Kim, J. W.; Lee, J. H.; Son, Y. K.; Kim, Y. B.; Woo, K.; Lee, C.; Kim, I. D.; Seok, J. Y.; Yu, J. W., et al. Flash-Induced High-Throughput Porous Graphene via Synergistic Photo-Effects for Electromagnetic Interference Shielding. Nano-Micro Letters. Nano-Micro Lett. 2023, 15(1), 191. DOI: 10.1007/s40820-023-01157-8.
  • Wessapan, T.; Rattanadecho, P. Temperature-Induced in Human Organs Due to Near-Field and Far-Field Electromagnetic Exposure Effects. Int. J. Heat Mass Transfer. 2018, 119, 65–76. DOI: 10.1016/j.ijheatmasstransfer.2017.11.088.
  • Magiera, A.; Solecka, J. Radiofrequency Electromagnetic Radiation from Wi-Fi Affects Human Health, Particularly Children and Adolescents. Review. Roczniki Panstwowego Zakladu Higien. 2020, 71, 251–259.
  • Hu, C.; Zuo, H.; Li, Y. Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Front Public Health. 2021, 9, 691880. DOI: 10.3389/fpubh.2021.691880.
  • Tsoy, A.; Saliev, T.; Abzhanova, E.; Turgambayeva, A.; Kaiyrlykyzy, A.; Akishev, M.; Saparbayev, S.; Umbayev, B.; Askarova, S. The Effects of Mobile Phone Radiofrequency Electromagnetic Fields on β-Amyloid-Induced Oxidative Stress in Human and Rat Primary Astrocytes. Neuroscience. 2019, 408, 46–57. DOI: 10.1016/j.neuroscience.2019.03.058.
  • Wdowiak, A.; Mazurek, P. A.; Wdowiak, A.; Bojar, I. Effect of Electromagnetic Waves on Human Reproduction. Ann. Agric. Environ. Med. 2017, 24(1), 13–18. DOI: 10.5604/12321966.1228394.
  • Agarwal, A.; Desai, N. R.; Makker, K.; Varghese, A.; Mouradi, R.; Sabanegh, E.; Sharma, R. Effects of Radiofrequency Electromagnetic Waves (RF-EMW) from Cellular Phones on Human Ejaculated Semen: An in vitro Pilot Study. Fertil. Steril. 2009, 92(4), 1318–1325. DOI: 10.1016/j.fertnstert.2008.08.022.
  • Erogul, O.; Oztas, E.; Yildirim, I.; Kir, T.; Aydur, E.; Komesli, G.; Irkilata, H. C.; Irmak, M. K.; Peker, A. F. Effects of Electromagnetic Radiation from a Cellular Phone on Human Sperm Motility: An in vitro Study. Arch. Med. Res. 2006, 37(7), 840–843. DOI: 10.1016/j.arcmed.2006.05.003.
  • Oh, J. J.; Byun, S. S.; Lee, S. E.; Choe, G.; Hong, S. K. Effect of Electromagnetic Waves from Mobile Phones on Spermatogenesis in the Era of 4G-LTE. Biomed Res. Int. 2018, 2018, 1801798. DOI: 10.1155/2018/1801798.
  • Cordelli, E.; Arduino, L.; Benassi, B.; Consales, C.; Eleuteri, P.; Marino, C.; Sciortino, M.; Villani, P.; Brinkworth, M. H.; Chen, G., et al. Effects of Radiofrequency Electromagnetic Field (RF-EMF) Exposure on Pregnancy and Birth Outcomes: A Systematic Review of Experimental Studies on Non-Human Mammals. Environ. Int. 2023, 180, 108178. DOI: 10.1016/j.envint.2023.108178.
  • Abdolmaleki, A.; Sanginabadi, F.; Rajabi, A.; Saberi, R. The Effect of Electromagnetic Wave Exposure on Blood Parameters. Int. J. Hematol. Oncol. And Stem Cell Res. 2012, 6, 13–16.‏
  • Zamanian, A.; Hardiman, C. J. H. F. E. Electromagnetic Radiation and Human Health: A Review of Sources and Effects. High-Frequency Electron. 2005, 4, 16–26.‏.
  • Ahlbom, A.; Feychting, M. Electromagnetic Radiation: Environmental Pollution and Health. Br. Med. Bul. 2003, 68(1), 157–165. DOI: 10.1093/bmb/ldg030.
  • Özgür, A.; Tümkaya, L.; Terzi, S.; Kalkan, Y.; Erdivanlı, Ö. Ç.; Dursun, E. Effects of Chronic Exposure to Electromagnetic Waves on the Auditory System. Acta Oto-Laryngologica. 2015, 135(8), 765–770.‏. DOI: 10.3109/00016489.2015.1032434.
  • Zhang, G.; Wang, H.; Xie, W.; Zhou, S.; Nie, Z.; Niwamanya, G.; Zhao, Z.; Duan, H. Advancements in 3D-Printed Architectures for Electromagnetic Interference Shields. J. Mater. Chem. A. 2024, 12(10), 5581–5605. DOI: 10.1039/D3TA07181B.
  • Bozorgmanesh, M. A.; Honar, F.; Kowkabi, F. I Am Investigating the Effect of Mobile Phone Electromagnetic Waves on the Human Eye. (2023, April). In 1st C/lc on Mechanical, Electrical and Computer Engineering.‏ DOI: 10.2139/ssrn.4425726.
  • Kaur, S.; Vian, A.; Chandel, S.; Singh, H. P.; Batish, D. R.; Kohli, R. K. Sensitivity of Plants to High-Frequency Electromagnetic Radiation: Cellular Mechanisms and Morphological Changes. Rev. Environ. Sci. Biotechnol. 2021, 20(1), 55–74. DOI: 10.1007/s11157-020-09563-9.
  • Dziwulska-Hunek, A.; Szymanek, M.; Matwijczuk, A.; Leszczyński, N.; Niemczynowicz, A.; Myśliwa-Kurdziel, B. Impact of Electromagnetic Stimulation on the Mechanical and Photophysical Properties of Alfalfa Leaves. Sci. Rep. 2022, 12(1), 16687. DOI: 10.1038/s41598-022-20737-z.
  • Lopatina, N. G.; Zachepilo, T. G.; Kamyshev, N. G.; Dyuzhikova, N. A.; Serov, I. N. Effect of Nonionizing Electromagnetic Radiation on Behavior of the Honeybee, Apis Mellifera L. (Hymenoptera, Apidae). Entomol. Rev. 2019, 99(1), 24–29. DOI: 10.1134/S0013873819010032.
  • Xiao, Y.; Zhao, L.; Peng, R. Effects of Electromagnetic Waves on Pathogenic Viruses and Relevant Mechanisms: A Review. Virology. 2022, 19(1), 19. DOI: 10.1186/s12985-022-01889-w.
  • Balmori, A. Mobile Phone Mast Effects on Common Frog (Rana Temporaria) Tadpoles: The City Turned into a Laboratory. Electromagn Biol Med. 2010, 29(1–12), 31–35. DOI: 10.3109/15368371003685363.
  • Marushchak, O.; Nekrasova, O.; Oskyrko, O.; Voitenko, V.; Zhytnyk, D. Electromagnetic Field Influence on Peculiarities of Rana Temporaria Linnaeus, 1758 (ANURA, RANIDAE) ONTOGENY. Environ. Res. Eng. Manag. 2019, 75(2), 82–89. DOI: 10.5755/j01.erem.75.2.21090.
  • Augustianath, T.; Evans, D. A.; Anisha, G. S. Teratogenic Effects of Radiofrequency Electromagnetic Radiation on the Embryonic Development of Chick: A Study on Morphology and Hatchability. Res Vet Sci. 2023, 159, 93–100. DOI: 10.1016/j.rvsc.2023.04.015.
  • Pande, S.; Singh, B.; Mathur, R.; Dhami, T.; Saini, P.; Dhawan, S. Improved Electromagnetic Interference Shielding Properties of MWCNT–PMMA Composites Using Layered Structures. Nanoscale Res. Lett. 2009, 4(4), 327–334. DOI: 10.1007/s11671-008-9246-x.
  • Al-Ghamdi, A. A.; Al-Hartomy, O. A.; Al-Salamy, F.; El-Mossalamy, E. H.; Daiem, A. M. A.; El-Tantawy, F.; El‐Tantawy, F. Novel Electromagnetic Interference Shielding Effectiveness in the Microwave Band of Magnetic Nitrile Butadiene Rubber/Magnetite Nanocomposites. J. Appl. Polym. Sci. 2012, 125(4), 2604–2613. DOI: 10.1002/app.36371.
  • Chiscan, O.; Dumitru, I.; Postolache, P.; Tura, V.; Stancu, A. Electrospun PVC/Fe3O4 Composite Nanofibers for Microwave Absorption Applications. Mater. Lett. 2012, 68, 251–254. DOI: 10.1016/j.matlet.2011.10.084.
  • Gupta, T. K.; Singh, B. P.; Dhakate, S. R.; Singh, V. N.; Mathur, R. B. Improved Nanoindentation and Microwave Shielding Properties of Modified MWCNT Reinforced Polyurethane Composites. J. Mater. Chem. A. 2013, 1(32), 9138–9149. DOI: 10.1039/c3ta11611e.
  • Hoang, A. S. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyurethane Composite Films. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2011, 2(2), 25007. DOI: 10.1088/2043-6262/2/2/025007.
  • Li, Y.; Chen, C.; Zhang, S.; Ni, Y.; Huang, J. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyacrylate Composite Films. Appl. Surf. Sci. 2008, 254(18), 5766–5771. DOI: 10.1016/j.apsusc.2008.03.077.
  • Al-Saleh, M. H.; Sundararaj, U. X-Band EMI Shielding Mechanisms and Shielding Effectiveness of High Structure Carbon Black/Polypropylene Composites. J. Phys D: Appl Phys. 2012, 46(3), 35304. DOI: 10.1088/0022-3727/46/3/035304.
  • Nayak, L.; Khastgir, D.; Chaki, T. K. A Mechanistic Study on Electromagnetic Shielding Effectiveness of Polysulfone/Carbon Nanofibers Nanocomposites. J. Mater. Sci. 2013, 48(4), 1492–1502. DOI: 10.1007/s10853-012-6904-2.
  • Kashi, S.; Gupta, R. K.; Baum, T.; Kao, N.; Bhattacharya, S. N. Morphology, Electromagnetic Properties and Electromagnetic Interference Shielding Performance of Poly Lactide/Graphene Nanoplatelet Nanocomposites. Mater. Des. 2016, 95, 119–126. DOI: 10.1016/j.matdes.2016.01.086.
  • Yu, H.; Wang, T.; Wen, B.; Lu, M.; Xu, Z.; Zhu, C.; Chen, Y.; Xue, X.; Sun, C.; Cao, M. Graphene/Polyaniline Nanorod Arrays: Synthesis and Excellent Electromagnetic Absorption Properties. J. Mater. Chem. 2012, 22(40), 21679–21685. DOI: 10.1039/c2jm34273a.
  • Ling, J.; Zhai, W.; Feng, W.; Shen, B.; Zhang, J.; Zheng, W. G. Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2013, 5(7), 2677–2684. DOI: 10.1021/am303289m.
  • Das, N. C.; Liu, Y.; Yang, K.; Peng, W.; Maiti, S.; Wang, H. Single-Walled Carbon Nanotube/Poly(methyl Methacrylate) Composites for Electromagnetic Interference Shielding. Polym. Eng. Sci. 2009, 49(8), 1627–1634. DOI: 10.1002/pen.21384.
  • Khodiri, A. A.; Al-Ashry, M. Y.; El-Shamy, A. G. Novel Hybrid Nanocomposites Based on Polyvinyl Alcohol/Graphene/Magnetite Nanoparticles for High Electromagnetic Shielding Performance. J. Alloys Compd. 2020, 847, 156430. DOI: 10.1016/j.jallcom.2020.156430.
  • Zhang, H.; Heng, Z.; Zhou, J.; Shi, Y.; Chen, Y.; Zou, H.; Liang, M. In-Situ Co-Continuous Conductive Network Induced by Carbon Nanotubes in Epoxy Composites with Enhanced Electromagnetic Interference Shielding Performance. Chem. Eng. J. 2020, 398, 125559. DOI: 10.1016/j.cej.2020.125559.
  • Serrato, V. M.; Padilla, V.; Jones, D.; Herrera, S.; Campos, L.; Serrato, I.; Foltz, H.; Lozano, K. Electromagnetic Interference Shielding Effectiveness of Compression Molded Carbon Nanofiber-Reinforced Polyvinylidene Difluoride Film. Polym. Compos. 2022, 44(1), 592–608. DOI: 10.1002/pc.27121.
  • Mohsina, T.; Manohara, S. R.; Siddlingeshwar, B.; Narasimha, R.; Muhammad, F.; Khadke, U. V. Anticorrosion and Electromagnetic Interference Shielding Performance of Bifunctional PEDOT-Graphene Nanocomposites. Diam. Relat. Mater. 2023, 132, 109690. DOI: 10.1016/j.diamond.2023.109690.
  • Vineeta, S.; Sanjeev, K. S. Reduced Graphene Oxide/pdni/poly(ethylene-Co-Vinyl Acetate) Nanocomposites for Electromagnetic Interference Shielding. Mater. Chem. Phys. 2021, 276, 125418. DOI: 10.1016/j.matchemphys.2021.125418.
  • Zhao, Y.; Hou, J.; Bai, Z.; Yang, Y.; Guo, X.; Cheng, H.; Zhao, Z.; Zhang, X.; Chen, J.; Shen, C. Facile Preparation of Lightweight PE/PVDF/Fe3O4/CNTs Nanocomposite Foams with High Conductivity for Efficient Electromagnetic Interference Shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106095. DOI: 10.1016/j.compositesa.2020.106095.
  • Kuang, T.; Chang, L.; Chen, F.; Sheng, Y.; Fu, D.; Peng, X. Facile Preparation of Lightweight High-Strength Biodegradable Polymer/Multiwalled Carbon Nanotubes Nanocomposite Foams for Electromagnetic Interference Shielding. Carbon. 2016, 105, 305–313. DOI: 10.1016/j.carbon.2016.04.052.
  • Li, J.; Zhang, S.; Wang, L.; Liu, X. In situ Growth of Fe3O4 Nanoparticles in Poly(arylene ether nitrile)/Graphene/Carbon Nanotube Foams for Electromagnetic Interference Shielding. Acs Appl. Nano Mater. 2023, 6(9), 7802–7813. DOI: 10.1021/acsanm.3c00925.
  • Ni, J.; Zhan, R.; Qiu, J.; Fan, J.; Dong, B.; Guo, Z. Multi-Interfaced Graphene Aerogel/Polydimethylsiloxane Metacomposites with Tunable Electrical Conductivity for Enhanced Electromagnetic Interference Shielding. J. Mater. Chem. C. 2020, 8(34), 11748–11759. DOI: 10.1039/D0TC02278K.
  • Chakraborty, T.; Debnath, T.; Bhowmick, S.; Bandyopadhyay, A.; Karmakar, A.; Das, S.; Mahapatra, A. S.; Sutradhar, S. Enhancement of EMI Shielding Effectiveness of Flexible Co2U-Type Hexaferrite (Ba4co2fe36o60)-Poly(vinylidene Fluoride) Heterostructure Composite Materials: An Improved Radar Absorbing Material to Combat Against Electromagnetic Pollution. J. Appl. Phys. 2020, 128(9), 095301. DOI: 10.1063/5.0015161.
  • Cheng, Z.; Cao, Y.; Wang, R.; Xia, L.; Ma, S.; Li, Z.; Cai, Z.; Zhang, Z.; Huang, Y. Hierarchical Surface Engineering of Carbon Fiber for Enhanced Composites Interfacial Properties and Microwave Absorption Performance. Carbon. 2021, 185, 669–680. DOI: 10.1016/j.carbon.2021.09.053.
  • Schmitz, D. P.; Silva, T. I.; Ramoa, S. D. A. S.; Barra, G. M. O.; Pegoretti, A.; Soares, B. G. Hybrid Composites of ABS with Carbonaceous Fillers for Electromagnetic Shielding Applications. J. Appl. Polym. Sci. 2018, 135(29), 46546. DOI: 10.1002/app.46546.
  • George, G.; Simon, S. M.; Prakashan, V. P.; Sajna, M. S.; Faisal, M.; Chandran, A.; Wilson, R.; Biju, P. R.; Joseph, C.; Unnikrishnan, N. V. Morphological, Dielectric, Tunable Electromagnetic Interference Shielding and Thermal Characteristics of Multiwalled Carbon Nanotube Incorporated Polymer Nanocomposites: A Facile, Environmentally Benign and Cost-Effective Approach Realized via Polymer Latex/Waterborne Polymer As Matrix. Polym. Compos. 2017, 39, E1169–E1183.
  • Zhang, Y.; Yang, Z.; Yu, Y.; Wen, B.; Liu, Y.; Qiu, M. Tunable Electromagnetic Interference Shielding Ability in a One-Dimensional Bagasse Fiber/Polyaniline Heterostructure. ACS Appl. Energy Mater. 2019, 1(4), 737–745. DOI: 10.1021/acsapm.8b00025.
  • Ankur, K.; Palash, D.; Sangit, P.; Krishnendu, N.; Suman Kumar, G.; Narayan, C. D. Preferential Localization of Conductive Filler in Ethylene-Co-Methyl Acrylate/Thermoplastic Polyolefin Polymer Blends to Reduce Percolation Threshold and Enhanced Electromagnetic Radiation Shielding Over K Band Region. Polym. Compos. 2022, 44(3), 1603–1616. DOI: 10.1002/pc.27191.
  • Nasouri, K.; Shoushtari, A. M. Fabrication of Magnetite Nanoparticles/Polyvinylpyrrolidone Composite Nanofibers and Their Application As Electromagnetic Interference Shielding Material. J. Thermoplast. Compos. Mater. 2017, 31(4), 431–446. DOI: 10.1177/0892705717704488.
  • Darwish, M. S. A.; El-Sabbagh, A.; Stibor, I. Hyperthermia Properties of Magnetic Polyethylenimine Core/Shell Nanoparticles: Influence of Carrier and Magnetic Strength. J. Polym. Res. 2015, 22(12), 239. DOI: 10.1007/s10965-015-0882-4.
  • Darwish, M. S. A.; Kunz, U.; Peuker, U. Preparation and Catalytic Use of Platinum in Magnetic Core/Shell Nanocomposites. J. Appl. Polym. Sci. 2013, 129(4), 1806–1811. DOI: 10.1002/app.38864.
  • Motawie, M.; Hanafi, S. A.; Elmelawy, M. S.; Ahmed, S. M.; Mansour, N. A.; Darwish, M. S.; Abulyazied, D. E. Wax Co-Cracking Synergism of High Density Polyethylene to Alternative Fuels. Egypt. J. Pet. 2015, 24(3), 353–361. DOI: 10.1016/j.ejpe.2015.07.004.
  • Darwish, M. S. A.; Bakry, A.; Al-Harbi, L.; Khowdiary, M.; El-Henawy, A.; Yoon, J. Core/Shell PA6 @ Fe3O4 Nanofibers: Magnetic and Shielding Behavior. J. Dispersion Sci. Technol. 2020, 41(11), 1711–1719. DOI: 10.1080/01932691.2019.1635025.
  • Ye, Y.; Al-Khaledi, N.; Barker, L.; Darwish, M. S.; El Naggar, A. M.; El-Yahyaoui, A.; Hussein, A.; Hussein, E. S.; Shang, D.; Taha, M., et al. Uranium Resources in China’s Phosphate Rocks—Identifying Low-Hanging Fruits. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 052033. DOI: 10.1088/1755-1315/227/5/052033.
  • Darwish, M. S. A.; Stibor, I. Pentenoic C/lc. J Dispers. Sci. Technol. 2016, 37(12), 1793–1798. DOI: 10.1080/01932691.2016.1140584.
  • Atish, K.; Narendra, K. Advances in Transparent Polymer Nanocomposites and Their Applications: A Comprehensive Review, Polymer-Plastics Technology and Materials. Polym. Plast. Technol. Eng. 2022, 61(9), 937–974. DOI: 10.1080/25740881.2022.2029892.
  • Blachowicz, T.; Hütten, A.; Ehrmann, A. Electromagnetic Interference Shielding with Electrospun Nanofiber Mats—A Review of Production, Physical Properties and Performance. Fibers. 2022, 10(6), 47. DOI: 10.3390/fib10060047.
  • Rinaudo, M.; Fenner, R. Perspectives on Electrospinning for Tissue Engineering. Advanced Drug Delivery Reviews. 2003, 55, 131–147.
  • Zhu, N.; Jiang, T.; Zeng, X.; Li, S.; Shen, C.; Zhang, C.; Gong, W.; He, L. High Strength and Light Weight Polyamide 6/Carbon Fiber Composite Foams for Electromagnetic Interference Shielding. J. Appl. Polym. Sci. 2023, 140(17), e53818. DOI: 10.1002/app.53818.
  • Panda, P. K.; Ramakrishna, S. Electrospinning of Alumina Nanofibers Using Different Precursors. J. Mater. Sci. 2007, 42(6), 2189–2193. DOI: 10.1007/s10853-007-1581-2.
  • Bhardwaj, N.; Kundu, S. C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biochem. Adv. 2010, 28(3), 151–182. DOI: 10.1016/j.biotechadv.2010.01.004.
  • Chronakis, I. S.; Listak, D. Fundamental Principles of Electrospinning. In Electrospinning: A Versatile Method for Producing Nanofibers with Desired Properties; Springer: US, 2012; pp. 1–40.
  • Li, X.; Zhang, W.; Liu, Y. Preparation and Electromagnetic Interference Shielding Properties of Polyaniline/Cellulose Nanofibers Composite Membranes. J. Mater. Sci. 2012, 47, 233–239.
  • Ding, B.; Wang, M.; Wang, X.; Zhang, Q. Preparation and Electromagnetic Interference Shielding Properties of Polyacrylonitrile Nanofibers. Composites Part A: Applied Science and Manufacturing. 2013, 55, 131–137.
  • Liu, Y.; He, C.; Hu, Y. Preparation and Electromagnetic Interference (EMI) Shielding Properties of Polyethylene Oxide Nanofibers. Chinese J. Polym. 2012, 27, 305–310.
  • Wu, C.; Lin, Y.; Chen, J.; Wang, X.; Wang, M. Preparation and Electromagnetic Interference Shielding Properties of Polystyrene Nanofibers. J. Mater. Sci. 2013, 48, 3644–3650.
  • Zhu, H.; Zhao, Y.; Zhang, X.; Sun, C.; Hu, Y. Preparation and Electromagnetic Interference Shielding Properties of Polyvinylpyrrolidone Nanofibers. J. Mater. Sci. 2013, 48, 3626–3634.
  • Guo, Q.; Ghadiri, R.; Weigel, T.; Aumann, A.; Gurevich, E.; Esen, C.; Medenbach, O.; Cheng, W.; Chichkov, B.; Ostendorf, A., et al. Comparison of in situ and ex situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers. 2014, 6(7), 2037–2050.
  • Huang, X.; Wang, S.; Zhu, M.; Yang, K.; Jiang, P.; Bando, Y.; Golberg, D.; Zhi, C. Thermally Conductive, Electrically Insulating and Melt-Processable Polystyrene/Boron Nitride Nanocomposites Prepared by in situ Reversible Addition Fragmentation Chain Transfer Polymerization. Nanotechnology. 2015, 9(1), 26. DOI: 10.1088/0957-4484/26/1/015705.
  • Zhou, Z.; Sun, J. Fabrication and Characterization of Polyaniline on Cotton Fabric via Two-Step in situ Polymerization. J. Phys.: Conf. Ser. 2021, 1790(1), 012070. IOP Publishing Ltd. DOI: 10.1088/1742-6596/1790/1/012070.
  • Liu, H.; Gong, Y.; Li, X.; Zhang, X.; Hu, C.; Wang, L.; Pang, Y.; Fang, C. The Effect of in-Situ Polymerization on PEDOT-PSS/PAN Composite Conductive Fiber. IOP Conference Series: Earth And Environmental Science. 2019, 218, 012161. DOI: 10.1088/1755-1315/218/1/012161.
  • Baniasadi, H.; Chatzikosmidou, D.; Seppälä, J. Innovative Integration of Pyrolyzed Biomass into Polyamide 11: Sustainable Advancements Through in situ Polymerization for Enhanced Mechanical, Thermal, and Additive Manufacturing Properties. Additive Manuf. 2023, 78, 103869. DOI: 10.1016/j.addma.2023.103869.
  • Fukushima, K.; Murariu, M.; Camino, G.; Dubois, P. Effect of Expanded Graphite/layered-Silicate Clay on Thermal, Mechanical and Fire Retardant Properties of Poly(lactic Acid). Polym. Degrad. Stab. 2010, 95(6), 1063–1076. DOI: 10.1016/j.polymdegradstab.2010.02.029.
  • Dlamini, D.; Mishra, B.; Mishra, A.; Mamba, B. Comparative Studies of the Morphological and Thermal Properties of Clay/Polymer Nanocomposites Synthesized via Melt Blending and Modified Solution Blending Methods. J. Compos. Mater. 2011, 45(21), 2211–2216. DOI: 10.1177/0021998311401074.
  • Albdiry, M. Effect of Melt Blending Processing on Mechanical Properties of Polymer Nanocomposites: A Review. Polym. Bull. 2023, 81(7), 5793–5821. DOI: 10.1007/s00289-023-05012-z.
  • Vasudevan, R.; Sundararajan, P.; Jose, V.; Maluleke, R.; Lebepe, T. C.; Aladesuyi, O. A.; Thomas, S.; Oluwafemi, O. S. Fabrication of Epoxy-CuInS-ZnS QDs- Nanocomposite for Fluorescent, Transparent Toughened Coating Applications. Mater. Sci. Eng. 2023, 297, 116726. DOI: 10.1016/j.mseb.2023.116726.
  • Nair, K. G.; Dufresne, A. Crab Shell Chitin Whisker Reinforced Natural Rubber Nanocomposites. 2. Processing and Swelling Behavior. Biomacromolecules. 2003, 4(3), 657–665. DOI: 10.1021/bm020127b.
  • Nair, K. G.; Dufresne, A.; Gandini, A.; Belgacem, M. N. Crab Shell Chitin Whiskers Reinforced by Natural Rubber Nanocomposites. 4. Effect of Chemical Modification of Chitin Whiskers. Biomacromolecules. 2003, 4(6), 1835–1842. DOI: 10.1021/bm030058g.
  • Rizvi, R.; Cochrane, B.; Naguib, H.; Lee, P. Fabrication and Characterization of Melt-Blended Polylactide-Chitin Composites and Their Foams. J. Cell. Plast. 2011, 47(3), 283–300. DOI: 10.1177/0021955X11402549.
  • Oksman, K.; Mathew, A. P.; Bondeson, D.; Kvien, I. Manufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites. Compos. Sci. Technol. 2006, 66(15), 2776–2784. DOI: 10.1016/j.compscitech.2006.03.002.
  • Liu, C.; Wang, L.; Liu, S.; Tong, L.; Liu, X. Fabrication Strategies of Polymer-Based Electromagnetic Interference Shielding Materials. Adv. Ind. Eng. Polym. Res. 2020, 3(4), 149–159. DOI: 10.1016/j.aiepr.2020.10.002.
  • Duan, H.; Yang, J.; Yang, Y.; Zhao, G.; Liu, Y. TiO2 Hybrid Polypropylene/Nickel Coated Glass Fiber Conductive Composites for Highly Efficient Electromagnetic Interference Shielding. J. Mater. Sci.: Mater. Electron. 2016, 28(8), 5725–5732. DOI: 10.1007/s10854-016-6244-0.
  • Na, R.; Liu, J.; Wang, G.; Zhang, S. Lightweight and Flexible Poly(ether Ether Ketone) Based Composite Film with Excellent Thermal Stability and Mechanical Properties for Wide-Band Electromagnetic Interference Shielding. R.S.C. Adv. 2018, 8(6), 3296–3303. DOI: 10.1039/C7RA11675F.
  • Ayub, S.; Guan, B. H.; You, K. Y. Electromagnetic Interference Shielding Mechanisms of MMG@PVDF Composites for a Broadband Frequency Range. Mater. Today Commun. 2023, 35, 106273. DOI: 10.1016/j.mtcomm.2023.106273.
  • Bertašius, P.; Plyushch, A.; Macutkeviˇc, J.; Banys, J.; Selskis, A.; Platnieks, O.; Gaidukovs, S. Multilayered Composites with Carbon Nanotubes for Electromagnetic Shielding Application. Polymers. 2023, 15(4), 1053. DOI: 10.3390/polym15041053.
  • Sharika, T.; Abraham, J.; Arif P, M.; George, S. C.; Kalarikkal, N.; Thomas, S. Excellent Electromagnetic Shield Derived from MWCNT-Reinforced NR/PP Blend Nanocomposites with Tailored Microstructural Properties. Compos. B Eng. 2019, 173, 106798. DOI: 10.1016/j.compositesb.2019.05.009.
  • Biswas, S.; Muzata, T.; Krause, B.; Rzeczkowski, P.; Pötschke, P.; Bose, S. Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites? J. Compos. Sci. 2020, 4(1), 9. DOI: 10.3390/jcs4010009.
  • Kaushal, A.; Singh, V. Melt-Processed Graphite-Polypropylene Composites for EMI Shielding Applications. J. Elec. Materi. 2020, 49(9), 5293–5301. DOI: 10.1007/s11664-020-08247-y.
  • Jie, L.; Ye, W.; Tian-Ning, Y.; Gao, Y.-N.; Shi, Y.-D.; Shen, J.-B.; Wu, H.; Wang, M. Robust Electromagnetic Interference Shielding, Joule Heating, Thermal Conductivity, and Anti-Dripping Performances of Polyoxymethylene with Uniform Distribution and High Content of Carbon-Based Nanofillers. Compos. Sci. Technol. 2021, 206, 108681. DOI: 10.1016/j.compscitech.2021.108681.
  • Zeng, Q.; Du, Z.; Qin, C.; Wang, Y.; Liu, C.; Shen, C. Enhanced Thermal, Mechanical and Electromagnetic Interference Shielding Properties of Graphene Nanoplatelets-Reinforced Poly(lactic Acid)/Poly(ethylene Oxide) Nanocomposites. Mater. Today Commun. 2020, 25, 101632. DOI: 10.1016/j.mtcomm.2020.101632.
  • Schmitz, D. P.; Silva, T. I.; Ramoa, S. D. A. S.; Barra, G. M. O.; Pegoretti, A.; Soares, B. G. Hybrid Composites of ABS with Carbonaceous Fillers for Electromagnetic Shielding Applications. J. Appl. Polym. Sci. 2018, 135(29), 46546. DOI: 10.1002/app.46546.
  • Chen, K.; Feng, Y.; Shi, Y.; Wang, H.; Fu, L.; Liu, M.; Lv, Y.; Yang, F.; Yu, B., et al. Flexible and Fire-Safe Sandwich Structured Composites with Superior Electromagnetic Interference Shielding Properties. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107070. DOI: 10.1016/j.compositesa.2022.107070.
  • Verma, P.; Saini, P. Excellent Electromagnetic Interference Shielding and Mechanical Properties of High Loading Carbon-Nanotubes/polymer Composites Designed Using Melt Recirculation Equipped Twin-Screw Extruder. Carbon. 2015, 89, 308–317. DOI: 10.1016/j.carbon.2015.03.063.
  • Gupta, A.; Choudhary, V. Electromagnetic Interference Shielding Behavior of Poly(trimethylene Terephthalate)/multi-Walled Carbon Nanotube Composites. Comp. Sci. Technol. 2011, 71(13), 1563. DOI: 10.1016/j.compscitech.2011.06.014.
  • Choudhary, V.; Dhawan, S.; Saini, P. Polymer-Based Nanocomposites for Electromagnetic Interference (EMI) Shielding.– Theory and Development of New Materials. 2012. Research Signpost, India.
  • Saini, P.; Aror, M. Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes. InTech. 2012. DOI: 10.5772/48779.
  • Retailleau, C.; Alaa-Eddine, J. Universal Behavior for Electromagnetic Interference Shielding Effectiveness of Polymer-Based Composite Materials. Compos. Sci. Technol. 2022, 221, 109351. DOI: 10.1016/j.compscitech.2022.109351.
  • Akpan, E. I.; Shen, X.; Wetzel, B.; Friedrich, K. Design and Synthesis of Polymer Nanocomposites. In Micro and Nano Technologies, Polymer Composites with Functionalized Nanoparticles; Krzysztof, P., and Tomasz, M. M., Eds.; Elsevier, 2019; pp. 47–83. DOI: 10.1016/B978-0-12-814064-2.00002-0.
  • Mtibe, A.; Mokhothu, T. H.; John, M. J.; Mokhena, T. C.; Mochane, M. J. Fabrication and Characterization of Various Engineered Nanomaterials. Elsevier eBooks. 2018, 151–171. DOI: 10.1016/B978-0-12-813351-4.00009-2.
  • Zhu, Y.; Wu, W.; Gao, M.; Yan, J.; Wang, B. Molecular Compatibility and Hydrogen Bonding Mechanism of PES/PEI Blends. Polymers. 2022, 14(15), 3046. DOI: 10.3390/polym14153046.
  • Liu, Y.; Bi, Y.; Chai, L.; Song, L.; Huang, J.; Wang, Q.; Li, Y.; Zhou, K. Development of Epimedin a Complex Drugs for Treating the Osteoporosis. J. Mater. Sci. Mater. Med. 2021, 32(1), 17. DOI: 10.1007/s10856-020-06472-9.
  • Xie, Y.; Lan, X. R.; Bao, R. Y.; Lei, Y. High-Performance Porous Polylactide Stereocomplex Crystallite Scaffolds Prepared by Solution Blending and Salt Leaching. Mater. C/lc. 2018, 90, 602–609. DOI: 10.1016/j.msec.2018.05.023.
  • Sengwa, R. J.; Kumar, N. Composition Controllable Multifunctionality of PVDF/PMMA/BaTio3/OMMT Based Ternary and Quaternary Hybrid Polymer Nanocomposites. Chem. Phys. Imp. 2023, 7, 100281. DOI: 10.1016/j.chphi.2023.100281.
  • Xiang, Z.; He, Q.; Wang, Y.; Yin, X.; Xu, B. Preparation and Electromagnetic Wave Absorption Properties of SiC/SiO2 Nanocomposites with Different Special Structures. Appl. Surf. Sci. 2022, 599, 153968. DOI: 10.1016/j.apsusc.2022.153968.
  • Zhao, B.; Shao, G.; Fan, B.; Xie, Y.; Zhang, R. Preparation and Electromagnetic Wave Absorption of Chain-Like CoNi by a Hydrothermal Route. J. Magn. Magn. Mater. 2014, 372, 195–200. DOI: 10.1016/j.jmmm.2014.08.018.
  • Zhang, M.; Li, Z.; Wang, T.; Chen, H.-L. Preparation and Electromagnetic Wave Absorption Performance of Fe3Si/SiC@SiO2Nanocomposites. Chem. Eng. J. 2019, 52(4), 362. DOI: 10.1252/jcej.18we199.
  • Wang, D.; Wang, Y.; Liu, N. Preparation and Electromagnetic-Wave-Absorption Properties of N, O-Doped PmmA&DvB&An Carbon Microspheres with Porous Hollow Structures. Chem. Eng. J. 2023, 456, 140987. DOI: 10.1016/j.cej.2022.140987.
  • Ren, M.; Li, F.; Wang, B.; Wei, J.; Yu, Q. Preparation and Electromagnetic Wave Absorption Properties of Carbon Nanotubes Loaded Fe3O4 Composites. J. Magn. Magn. Mater. 2020, 513, 167259. DOI: 10.1016/j.jmmm.2020.167259.
  • Tang, X.; Hu, K. Preparation and Electromagnetic Wave Absorption Properties of Fe-Doped Zinc Oxide Coated Barium Ferrite Composites. Mater. Sci. Eng. 2007, 139(2–3), 119–123. DOI: 10.1016/j.mseb.2007.01.052.
  • Xiao, F.; Haibin, S.; Li, J.; Guo, X.; Zhang, H.; Lu, J.; Pan, Z.; Xu, J. Electrospinning Preparation and Electromagnetic Wave Absorption Properties of SiCN Fibers. Ceram. Int. 2020, 46(8), 12773–12781. DOI: 10.1016/j.ceramint.2020.02.046.
  • Zhou, Q.; Yin, X.; Ye, F.; Tang, Z.; Mo, R.; Cheng, L. High-Temperature Electromagnetic Wave Absorption Properties of SiCf/Si3N4 Composite Induced by Different SiC Fibers. Ceram. Int. 2018, 45(5), 6514–6522. DOI: 10.1016/j.ceramint.2018.12.142.
  • Rao, M.; Rao, C.; Kumari, A. Synthesis, Stability, and Emission Analysis of Magnetite Nanoparticle-Based Biofuels. J. Eng. Appl. Sci. 2022, 69(1), 69. DOI: 10.1186/s44147-022-00127-y.
  • Mansha, A.; Zubair, K.; Rehan, Z. A.; Shakir, H. M. F.; Javed, T.; Shabbir, R.; Mustafa, S. K.; Mora-Poblete, F.; Zhou, J.-R.; Kumar, U., et al. Synthesis of Nickel Spinel Ferrites Nanoparticles Coated with Thermally Reduced Graphene Oxide for EMI Shielding in the Microwave, UV, and NIR Regions. Polymers. 2021, 13(19), 13.
  • Taş, M.; Gishiwa, U.; Ahmed, I.; Xu, F.; Smartt, C.; Hou, X. Functionalised SiO2 Modified Icephobic Nanocomposite Electrospun Membranes for Outdoor Electromagnetic Shielding Applications. Polymer. 2022, 240, 240. DOI: 10.1016/j.polymer.2021.124499.
  • Park, J.; Kwac, L.; Kim, H. G.; Shin, H. K. Fabrication and Characterization of Waste Wood Cellulose Fiber/Graphene Nanoplatelet Carbon Papers for Application As Electromagnetic Interference Shielding Materials. Nanomater. (Basel, Switzerland). 2021, 11(11), 2878. DOI: 10.3390/nano11112878.
  • Ahmad, A.; Aziz, S.; Abbas, Z.; Obaiys, S.; Khamis, A.; Hussain, I.; Zaid, M. Preparation of a Chemically Reduced Graphene Oxide Reinforced Epoxy Resin Polymer As a Composite for Electromagnetic Interference Shielding and Microwave-Absorbing Applications. Polymers. 2018, 10(11), 1180. DOI: 10.3390/polym10111180.
  • Ramlow, H.; de Souza, G. B.; Fonseca, M. P.; Raizer, A.; Rambo, C. R.; Machado, R. A. F. Lightweight and Flexible Nanostructured C/SiCN Nanofiber Nonwoven for Electromagnetic Reflection Shielding of 5G C-Band Frequencies. J. Mater. Sci. Mater. Electron. 2023, 34(22), 1631. DOI: 10.1007/s10854-023-11037-x.
  • Falla0h Madvari, R.; Hosseinabadi, S.; Bidel, H.; Pourtaghi, G.; Laal, F. Total Shielding Efficiency, Reflection Loss and Absorption Loss of Nanoparticles/Paraffin Wax Absorber in the Shielding of Electromagnetic Pollution. Trans. Electr. Electron. Mater. 2022, 23(6), 666–673. DOI: 10.1007/s42341-022-00406-8.
  • Xia, Y.; Gao, W.; Gao, C. A Review on Graphene‐Based Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption. Adv. Funct. Mater. 2022, 32(42), 32. DOI: 10.1002/adfm.202204591.
  • Gao, D.; Guo, S.; Zhou, Y.; Lyu, B.; Li, X.; Zhao, P.; Ma, J. Absorption-Dominant, Low-Reflection Multifunctional Electromagnetic Shielding Material Derived from Hydrolysate of Waste Leather Scraps. ACS Appl. Mater. Interfaces. 2022, 14(33), 38077–38089. DOI: 10.1021/acsami.2c10787.
  • Wang, H.; Li, S.; Liu, M.; Li, J.; Zhou, X. Review on Shielding Mechanism and Structural Design of Electromagnetic Interference Shielding Composites. Macro Materials & Eng. 2021, 306(6), 306. DOI: 10.1002/mame.202100032.
  • Li, W.; Feng, L.; Shi, X.; Wang, Y. Mechanical and Electromagnetic Shielding Properties of Carbon Foam. Adv. Eng. Mater. 2021, 23(12), 23. DOI: 10.1002/adem.202100452.
  • Zahid, M.; Siddique, S.; Anum, R.; Shakir, M. F.; Nawab, Y.; Rehan, Z. A. M-Type Barium Hexaferrite-Based Nanocomposites for EMI Shielding Application: A Review. J. Supercond Nov. Magn. 2021, 34(4), 1019–1045. DOI: 10.1007/s10948-021-05859-1.
  • Zhao, B.; Hamidinejad, M.; Wang, S.; Bai, P.; Che, R.; Zhang, R.; Park, C. B. Advances in Electromagnetic Shielding Properties of Composite Foams. J. Mater. Chem. A. 2021, 9(14), 8896–8949. DOI: 10.1039/D1TA00417D.
  • Xiao, Q.; Chen, Z. Electromagnetic Interference Shielding Performance and Mechanism of Fe/Al Modified SiC/SiC Composites. J. Alloys Compd. 2021, 887, 161359. DOI: 10.1016/j.jallcom.2021.161359.
  • Ramazanov, M. A.; Hajiyeva, F. V.; Maharramov, A. M.; Di Palma, L.; Sannino, D.; Takafuji, M.; Mammadov, H. M.; Hasanova, U. A.; Shirinova, H. A.; Bayramova, Z. A. New Magnetic Polymer Nanocomposites on the Basis of Isotactic Polypropylene and Magnetite Nanoparticles for Adsorption of Ultrahigh Frequency Electromagnetic Waves. Polym.-Plast. Technol. Eng. 2018, 57(5), 449–458. DOI: 10.1080/03602559.2017.1320721.
  • Chandan, A. Polymer Nanoparticles-Preparations, Applications and Future Insights: A Concise Review. Polym. Plast. Technol. Eng. 2021, 60, 1996–2024.
  • Christopher, I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and Mxene Nanocomposites, Polymer-Plastics Technology and Materials. Polym. Plast. Technol. Eng. 2023, 62(1), 19–53. DOI: 10.1080/25740881.2022.2089581.
  • Wang, H.; Li, S.; Liu, M.; Li, J.; Zhou, X. Review on Shielding Mechanism and Structural Design of Electromagnetic Interference Shielding Composites. Macro Mater. Eng. 2021, 306(6), 306. DOI: 10.1002/mame.202100032.
  • Wang, Y.; Zhao, W.; Tan, L.; Li, Y.; Qin, L.; Li, S. Review of Polymer-Based Composites for Electromagnetic Shielding Application. Molecules. 2023, 28(15), 5628. DOI: 10.3390/molecules28155628.
  • Al-Saleh, M. H.; Sundararaj, U. Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites. Carbon. 2009, 47(7), 1738–1746. DOI: 10.1016/j.carbon.2009.02.030.
  • Hong, S. K.; Kim, K. Y.; Kim, T. Y.; Kim, J. H.; Park, S. W.; Kim, J. H.; Cho, B. J. Electromagnetic Interference Shielding Effectiveness of Monolayer Graphene. Nanotechnology. 2012, 23(45), 455704. DOI: 10.1088/0957-4484/23/45/455704.
  • Watts, C. M.; Liu, X.; Padilla, W. J. Metamaterial Electromagnetic Wave Absorbers. Advanced Materials. 2012, 24(23), OP98–OP120. DOI: 10.1002/adma.201200674.
  • Han, M.; Yin, X.; Hantanasirisakul, K.; Li, X.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y., et al. Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Adv. Opt. Mater. 2019, 7(10), 1900267.
  • Ghosh, S.; Ganguly, S.; Remanan, S.; Mondal, S.; Jana, S.; Maji, P. K.; Singha, N.; Das, N. C. Ultra-Light Weight, Water Durable and Flexible Highly Electrical Conductive Polyurethane Foam for Superior Electromagnetic Interference Shielding Materials. J. Mater. Sci.: Mater. Electron. 2018, 29(12), 10177–10189. DOI: 10.1007/s10854-018-9068-2.
  • Tanaka, K. Interference Mitigation Techniques for Electronic Devices. Electron. Eng. J. 2024, 12, 210–215.
  • Johnson, A. Impact of Electromagnetic Interference on Electronic Device Performance. IEEE Trans. Electron. Components. 2023, 17, 89–95.
  • Wang, L. Faraday Cages: Principles and Applications in Electronics. Phys. Review. 2021, 50, 321–330.
  • Chang, S. Safety Considerations in Medical Imaging Facilities. Health Facil. Manag. 2024, 36, 78–85.
  • Jones, R. Importance of Shielding in Medical Imaging. Radiology Today. 2023, 40, 50–55.
  • Garcia, M. Health Effects of Electromagnetic Fields Exposure. J. Environl Health. 2023, 28, 65–72.
  • Guo, H.; Chen, Y.; Li, Y.; Zhou, W.; Xu, W.; Pang, L.; Fan, X.; Jiang, S. Electrospun Fibrous Materials and Their Applications for Electromagnetic Interference Shielding: A Review. Composites Part A: Applied Science and Manufacturing. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106309. DOI: 10.1016/j.compositesa.2021.106309.
  • Heguang, L.; Shaoqing, W.; Caiyin, Y.; Tian, N.; Li, Y.; Chopra, N. Recent Progress in Morphological Engineering of Carbon Materials for Electromagnetic Interference Shielding. Carbon. 2021, 172, 569–596. DOI: 10.1016/j.carbon.2020.10.067.
  • Fang, J.; Meng, C.; Zhang, G.; Xu, Z. High-Performance Flexible PANI/PLA Textiles with Antibacterial, Flame-Retardant, and Electromagnetic Shielding for All-Solid-State Supercapacitors and Sensors. Fibers Polym. 2023, 24(3), 1015–1028. DOI: 10.1007/s12221-023-00107-w.
  • Sousa, R.; Renata, M. Scalable Flexible Electromagnetic Interference Shielding Textiles Based on MWCNTs and PEDOT:PSS. Solid State Phenomena; Trans Tech Publications, Ltd, 2022.
  • Verma, S.; Dhangar, M.; Paul, S.; Chaturvedi, K.; Khan, M. A.; Srivastava, A. K. Recent Advances for Fabricating Smart Electromagnetic Interference Shielding Textile: A Comprehensive Review. Electron. Mater. Lett. 2022, 18(4), 331–344. DOI: 10.1007/s13391-022-00344-w.
  • Pušić, T.; Šaravanja, B.; Malarić, K.; Luburić, M.; Kaurin, T. Electromagnetic Shielding Effectiveness of Woven Fabric with Integrated Conductive Threads After Washing with Liquid and Powder Detergents. Polymers. 2022, 14(12), 12. DOI: 10.3390/polym14122445.
  • Yao, D. J.; Tang, Z. H.; Liang, Z. H.; Zhang, L.; Sun, Q.-J.; Fan, J. M.; Zhong, G. K.; Liu, Q.-X.; Jiang, Y.-P.; Tang, X.-G., et al. Adhesive, Multifunctional, and Wearable Electronics Based on MXene-Coated Textile for Personal Heating Systems, Electromagnetic Interference Shielding, and Pressure Sensing. J. Colloid Interface Sci. 2023, 630, 23–33. DOI: 10.1016/j.jcis.2022.09.003.
  • Jayalakshmi, C. G.; Inamdar, A.; Anand, A.; Kandasubramanian, B. Polymer Matrix Composites As Broadband Radar Absorbing Structures for Stealth Aircraft. J Of Applied Polymer Sci. 2018, 136(14), 47241. DOI: 10.1002/app.47241.
  • Joshi, A. M.; Athawale, A. A. Electrically Conductive Silicone/Organic Polymer Composites. Silicon. 2013, 6(3), 199–206. DOI: 10.1007/s12633-013-9171-1.
  • Scott, P. Aerospace and Military [Technology 2000 Analysis and Forecast]. IEEE Spectr. 2000, 37(1), 97–102. DOI: 10.1109/6.815447.
  • Wang, C.; Chen, M.; Lei, H.; Yao, K.; Li, H.; Wen, W.; Fang, D. Radar Stealth and Mechanical Properties of a Broadband Radar Absorbing Structure. Compos. Part B Eng. 2017, 123, 19–27. DOI: 10.1016/j.compositesb.2017.05.005.
  • Amudhu, L. B. T.; Samsingh, R. V.; Florence, S. E.; Abirami, B. S. Novel Radar Absorbing Material Using Resistive Frequency Selective Surface Based Polymer Composites for Enhanced Broadband Microwave Absorption. Proceedings Of The Institution Of Mechanical Engineers, Part L: Journal Of Materials: Design And Applications. 2023, 237(10), 2115–2125. DOI: 10.1177/14644207231169362.
  • Teber, A.; Unver, I.; Kavas, H.; Aktas, B.; Bansal, R. Knitted Radar Absorbing Materials (RAM) Based on Nickel–Cobalt Magnetic Materials. J. Magn. Magn. Mater. 2016, 406, 228–232. DOI: 10.1016/j.jmmm.2015.12.056.
  • Chen, C.-Y.; Pu, N.-W.; Liu, Y.-M.; Huang, S.-Y.; Wu, C.-H.; Ger, M.-D.; Gong, Y.-J.; Chou, Y.-C. The Microwave Absorption Performance of Graphene Is Remarkable at a Very Low Loading Ratio. Compos. Part B Eng. 2017, 114, 395–403. DOI: 10.1016/j.compositesb.2017.02.016.
  • Kasgoz, A.; Korkmaz, M.; Durmus, A. Compositional and Structural Design of Thermoplastic Polyurethane/carbon-Based Single and Multi-Layer Composite Sheets for High-Performance X-Band Microwave Absorbing Applications. Polymer. 2019, 180, 121672. DOI: 10.1016/j.polymer.2019.121672.
  • Pratap, V.; Soni, A. K.; Baskey, H. B.; Abbas, S. M.; Siddiqui, A. M.; Prasad, N. E. Electromagnetic and Radar Absorbing Properties of γ Fe2O3/Ba4Co2Fe36O60-Epoxy Polymeric Composites for Stealth Applications. Solid State Sci. 2021, 113, 106553. DOI: 10.1016/j.solidstatesciences.2021.106553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.