266
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fractional dynamics and sensitivity analysis of measles epidemic model through vaccination

, , , , & ORCID Icon
Pages 265-281 | Received 11 Feb 2024, Accepted 16 Apr 2024, Published online: 07 May 2024

References

  • Abbasi, Z., Zamani, I., Mehra, A. H. A., Shafieirad, M., & Ibeas, A. (2020). Optimal control design of impulsive SQEIAR epidemic models with application to COVID-19. Chaos, Solitons, and Fractals, 139, 110054. doi:10.1016/j.chaos.2020.110054
  • Abboubakar, H., Fandio, R., Sofack, B. S., & Ekobena Fouda, H. P. (2022). Fractional dynamics of a measles epidemic model. Axioms, 11(8), 363. doi:10.3390/axioms11080363
  • Ahmad, W., Rafiq, M., Butt, A. I. K., Ahmad, N., Ismaeel, T., Malik, S., … Asif, Z. (2024). Analytical and numerical explorations of optimal control techniques for the bi-modal dynamics of Covid-19. Nonlinear Dynamics, 112(5), 3977–4006. doi:10.1007/s11071-023-09234-8
  • Ain, Q. T., Anjum, N., Din, A., Zeb, A., Djilali, S., & Khan, Z. A. (2022). On the analysis of Caputo fractional order dynamics of Middle East Lungs Coronavirus (MERS-CoV) model. Alexandria Engineering Journal, 61(7), 5123–5131. doi:10.1016/j.aej.2021.10.016
  • Ain, Q. T., & Chu, Y. M. (2004). On fractal fractional hepatitis B epidemic model with modified vacci. New England Journal of Medicine, 351(27), 2832–2838.
  • Ain, Q. T., Khan, A., Abdeljawad, T., Gómez-Aguilar, J. F., & Riaz, S. (2024). Dynamical study of varicella-zoster virus model in sense of Mittag-Leffler kernel. International Journal of Biomathematics, 17(03), 2350027. doi:10.1142/S1793524523500274
  • Ain, Q. T., & Wang, J. (2023). A stochastic analysis of co-infection model in a finite carrying capacity population. International Journal of Biomathematics, 2350083. doi:10.1142/S1793524523500833
  • Alzahrani, E. O., & Khan, M. A. (2020). Comparison of numerical techniques for the solution of a fractional epidemic model. The European Physical Journal Plus, 135(1), 110. doi:10.1140/epjp/s13360-020-00183-4
  • Angelo, K. M., Gastañaduy, P. A., Walker, A. T., Patel, M., Reef, S., Lee, C. V., & Nemhauser, J. (2019). Spread of measles in Europe and implications for US travelers. Pediatrics, 144(1) doi:10.1542/peds.2019-0414
  • Anjum, N., Ain, Q. T., & Li, X. X. (2021). Two-scale mathematical model for tsunami wave. GEM-International Journal on Geomathematics, 12(1), 10.
  • Anjum, N., He, C. H., & He, J. H. (2021). Two-scale fractal theory for the population dynamics. Fractals, 29(07), 2150182. doi:10.1142/S0218348X21501826
  • Baishya, C., Achar, S. J., Veeresha, P., & Prakasha, D. G. (2021). Dynamics of a fractional epidemiological model with disease infection in both the populations. Chaos (Woodbury, N.Y.), 31(4), 043130. doi:10.1063/5.0028905
  • Batool, A., Talib, I., Riaz, M. B., & Tunç, C. (2022). Extension of lower and upper solutions approach for generalized nonlinear fractional boundary value problems. Arab Journal of Basic and Applied Sciences, 29(1), 249–256. doi:10.1080/25765299.2022.2112646
  • Battegay, R., Itin, C., & Itin, P. (2012). Dermatological signs and symptoms of measles: A prospective case series and comparison with the literature. Dermatology (Basel, Switzerland), 224(1), 1–4. doi:10.1159/000335091
  • Bohner, M., Tunç, O., & Tunç, C. (2021). Qualitative analysis of caputo fractional ıntegro-differential equations with constant delays. Computational and Applied Mathematics, 40(6), 2021–2214. doi:10.1007/s40314-021-01595-3
  • Budigan Ni, H., de Broucker, G., Patenaude, B. N., Dudley, M. Z., Hampton, L. M., & Salmon, D. A. (2023). Economic impact of vaccine safety incident in Ukraine: The economic case for safety system investment. Vaccine, 41(1), 219–225.
  • Butt, A. R., Ahmad Saqib, A., Alshomrani, A. S., Bakar, A., & Inc, M. (2024). Dynamical analysis of a nonlinear fractional cervical cancer epidemic model with the nonstandard finite difference method. Ain Shams Engineering Journal, 15(3), 102479. doi:10.1016/j.asej.2023.102479
  • Butt, A. I. K., Ahmad, W., Rafiq, M., & Baleanu, D. (2022). Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic. Alexandria Engineering Journal, 61(9), 7007–7027. doi:10.1016/j.aej.2021.12.042
  • Butt, A. R., Saqib, A. A., Bakar, A., Ozsahin, D. U., Ahmad, H., & Almohsen, B. (2023). Investigating the fractional dynamics and sensitivity of an epidemic model with nonlinear convex rate. Results in Physics, 54, 107089. doi:10.1016/j.rinp.2023.107089
  • Callister, L. C. (2019). Global Measles Outbreak. MCN. The American Journal of Maternal Child Nursing, 44(4), 237. doi:10.1097/NMC.0000000000000542
  • Center of Disease Control and Prevention. (2023). Global Measles Outbreaks. Available online: https://www.cdc.gov/globalhealth/ measles/data/global-measles-outbreaks.html. (accessed on 19 January 2023).
  • Center of Disease Control and Prevention. (n.d.). Global Measles Outbreaks. Available online: https://www.cdc.gov/measles/cases-outbreaks.
  • Conlan, A. J. K., Rohani, P., Lloyd, A. L., Keeling, M., & Grenfell, B. T. (2010). Resolving the impact of waiting time distributions on the persistence of measles. Journal of the Royal Society, Interface, 7(45), 623–640. doi:10.1098/rsif.2009.0284
  • Din, A., Li, Y., Khan, F. M., Khan, Z. U., & Liu, P. (2022). On Analysis of fractional order mathematical model of Hepatitis B using Atangana-Baleanu Caputo (ABC) derivative. Fractals, 30(01), 2240017. doi:10.1142/S0218348X22400175
  • Farman, M., Saleem, M. U., Ahmad, A., & Ahmad, M. O. (2018). Analysis and numerical solution of SEIR epidemic model of measles with non-integer time fractional derivatives by using Laplace Adomian Decomposition Method. Ain Shams Engineering Journal, 9(4), 3391–3397. doi:10.1016/j.asej.2017.11.010
  • Fisker, A. B., Martins, J. S. D., Jensen, A. M., Martins, C., Aaby, P., & Thysen, S. M. (2022). Health effects of utilising hospital contacts to provide measles vaccination to children 9-59 months-a randomised controlled trial in Guinea-Bissau. Trials, 23(1), 349. doi:10.1186/s13063-022-06291-z
  • Gambrell, A., Sundaram, M., & Bednarczyk, R. A. (2022). Estimating the number of US children susceptible to measles resulting from COVID-19-related vaccination coverage declines. Vaccine, 40(32), 4574–4579. doi:10.1016/j.vaccine.2022.06.033
  • Gould, D. (2015). Measles: Symptoms, diagnosis, management and prevention. Primary Health Care, 25(1), 34–40. doi:10.7748/phc.25.1.34.e908
  • Graef, J. R., Tunç, C., & Şevli, H. (2021). Razumikhin qualitative analyses of Volterra integro-fractional delay differential equation with Caputo derivatives. Communications in Nonlinear Science and Numerical Simulation, 103(2021), 106037. doi:10.1016/j.cnsns.2021.106037
  • Ilesanmi, M. M., Adeyinka, D. A., & Olakunde, B. O. (2022). Sustainable Development Goals and childhood measles vaccination in Ekiti State, Nigeria: Results from spatial and interrupted time series analyses. Vaccine, 40(28), 3861–3868. doi:10.1016/j.vaccine.2022.05.037
  • James Peter, O., Ojo, M. M., Viriyapong, R., & Abiodun Oguntolu, F. (2022). Mathematical model of measles transmission dynamics using real data from Nigeria. Journal of Difference Equations and Applications, 28(6), 753–770. doi:10.1080/10236198.2022.2079411
  • Jost, M., Luzi, D., Metzler, S., Miran, B., & Mutsch, M. (2015). Measles associated with international travel in the region of the Americas, Australia and Europe, 2001-2013: A systematic review. Travel Medicine and Infectious Disease, 13(1), 10–18. doi:10.1016/j.tmaid.2014.10.022
  • Khan, M. A., & Atangana, A. (2022). Mathematical modeling and analysis of COVID-19: A study of new variant Omicron. Physica A, 599, 127452. doi:10.1016/j.physa.2022.127452
  • Khan, T., Ullah, Z., Ali, N., & Zaman, G. (2019). Modeling and control of the hepatitis B virus spreading using an epidemic model. Chaos, Solitons, Fractals, 124, 1–9. doi:10.1016/j.chaos.2019.04.033
  • Liu, P., Ikram, R., Khan, A., & Din, A. (2022). The measles epidemic model assessment under real statistics: An application of stochastic optimal control theory. Computer Methods in Biomechanics and Biomedical Engineering, 26(2), 138–159. doi:10.1080/10255842.2022.2050222
  • Memon, Z., Qureshi, S., & Memon, B. R. (2020). Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan. European Physical Journal plus, 135(4), 378. doi:10.1140/epjp/s13360-020-00392-x
  • Nabti, A., & Ghanbari, B. (2021). Global stability analysis of a fractional SVEIR epidemic model. Mathematical Methods in the Applied Sciences, 44(11), 8577–8597. doi:10.1002/mma.7285
  • Ochoche, J. M., & Gweryina, R. I. (2014). A mathematical model of measles with vaccination and two phases of infectiousness. IOSR Journal of Mathematics, 10(1), 95–105. doi:10.9790/5728-101495105
  • Peter, O. J., Qureshi, S., Ojo, M. M., Viriyapong, R., & Soomro, A. (2022). Mathematical dynamics of measles transmission with real data from Pakistan. Modeling Earth Systems and Environment, 9(2), 1545–1558. doi:10.1007/s40808-022-01564-7
  • Pokharel, A., Adhikari, K., Gautam, R., Uprety, K. N., & Vaidya, N. K. (2022). Modeling transmission dynamics of measles in Nepal and its control with monitored vaccination program. Mathematical Biosciences and Engineering: MBE, 19(8), 8554–8579. doi:10.3934/mbe.2022397
  • Qureshi, S., & Jan, R. (2021). Modeling of measles epidemic with optimized fractional order under Caputo differential operator. Chaos, Solitons, Fractals, 145, 110766. doi:10.1016/j.chaos.2021.110766
  • Raza, N., Arshed, S., Bakar, A., Shahzad, A., & Inc, M. (2023). A numerical efficient splitting method for the solution of HIV time periodic reaction-diffusion model having spatial heterogeneity. Physica A: Statistical Mechanics and Its Applications, 609, 128385. doi:10.1016/j.physa.2022.128385
  • Raza, N., Bakar, A., Khan, A., & Tunç, C. (2022). Numerical simulations of the fractional-order SIQ mathematical model of Corona virus disease using the nonstandard finite difference scheme. Malaysian Journal of Mathematical Sciences, 16(3), 391–411. doi:10.47836/mjms.16.3.01
  • Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives (Vol. 1). Yverdon, Yverdon-les-Bains, Switzerland: Gordon and Breach Science Publishers.
  • Singh, J., Kumar, D., Hammouch, Z., & Atangana, A. (2018). A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Applied Mathematics and Computation, 316, 504–515. doi:10.1016/j.amc.2017.08.048
  • Sowole, S. O., Ibrahim, A., Sangare, D., & Lukman, A. O. (2020). Mathematical model for measles disease with control on the susceptible and exposed compartments. Open Journal of Mathematical Analysis, 4(1), 60–75. doi:10.30538/psrp-oma2020.0053
  • Tao, H., Anjum, N., & Yang, Y. J. (2023). The Aboodh transformation-based homotopy perturbation method: New hope for fractional calculus. Frontiers in Physics, 11, 1168795. doi:10.3389/fphy.2023.1168795
  • Toufik, M., & Atangana, A. (2017). New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models. The European Physical Journal Plus, 132(10), 1–16. doi:10.1140/epjp/i2017-11717-0
  • Tunç, C., Tunç, O., & Yao, J.-C. (2022). On the new qualitative results in integro-differential equations with Caputo fractional derivative and multiple kernels and delays. Journal of Nonlinear Convex Analysis, 23(11), 2577–2591.
  • Tunç, O., & Tunç, C. (2023). Solution estimates to Caputo proportional fractional derivative delay integro –differential equations. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales – Serie A: Matematicas 117(1). doi:10.1007/s13398-022-01345-y
  • Tyagi, S., Gupta, S., Abbas, S., Das, K. P., & Riadh, B. (2021). Analysis of infectious disease transmission and prediction through SEIQR epidemic model. Nonautonomous Dynamical Systems, 8(1), 75–86. doi:10.1515/msds-2020-0126
  • Uchaikin, V. V. (2013). Fractional derivatives for physicists and engineers (Vol. 2). Berlin: Springer
  • Vojtek, I., Larson, H., Plotkin, S., & Van Damme, P. (2022). Evolving measles status and immunization policy development in six European countries. Human Vaccines & Immunotherapeutics, 18(1), 2031776. doi:10.1080/21645515.2022.2031776
  • Yang, X. J. (2019). General fractional derivatives: Theory, methods and applications. Chapman and Hall/CRC.
  • Zafar, Z. U. A., Zaib, S., Hussain, M. T., Tunç, C., & Javeed, S. (2022). Analysis and numerical simulation of tuberculosis model using different fractional derivatives. Chaos, Solitons and Fractals, 160, 112202. doi:10.1016/j.chaos.2022.112202
  • Zafar, Z. U. L. A., Yusuf, A., Musa, S. S., Qureshi, S., Alshomrani, A. S., & Baleanu, D. (2022). Impact of public health awareness programs on COVID-19 dynamics: A fractional modeling approach. Fractals, 31(10) doi:10.1142/S0218348X23400054