2,500
Views
1
CrossRef citations to date
0
Altmetric
Review Article

The microalga Dunaliella and its applications: a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 99-120 | Received 11 Jan 2023, Accepted 31 May 2023, Published online: 19 Jun 2023

References

  • Acevedo, M. S., Puentes, C., Carreño, K., León, J. G., Stupak, M. … Blustein, G. (2013). Antifouling paints based on marine natural products from Colombian Caribbean. International Biodeterioration & Biodegradation, 83, 97–104. doi:10.1016/j.ibiod.2013.05.002
  • Aguilera, A., & Amils, R. (2005). Tolerance to cadmium in sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aquatic Toxicology, 75, 316–329. doi:10.1016/j.aquatox.2005.09.002
  • Aricescu, A. R., & Owens, R. J. (2013). Expression of recombinant glycoproteins in mammalian cells: Towards an integrative approach to structural biology. Current Opinion in Structural Biology, 23, 345–356. doi:10.1016/j.sbi.2013.04.003
  • Atasever-Arslan, B., Yilancioglu, K., Bekaroglu, M. G., Taskin, E., & Cetiner, E. A. S. (2015). Cytotoxic effect of extract from Dunaliella salina against SH-SY5Y neuroblastoma cells. General Physiology and Biophysics, 34, 201–207. doi:10.4149/gpb_2014034
  • Barzegari, A., Hejazi, M. A., Hosseinzadeh, N., Eslami, S., Mehdizadeh Aghdam, E., & Hejazi, M. S. (2010). Dunaliella as an attractive candidate for molecular farming. Molecular Biology Reports, 37, 3427–3430. doi:10.1007/s11033-009-9933-4
  • Béchet, Q., Coulombier, N., Vasseur, C., Lasserre, T., Le Dean, L., & Bernard, O. (2018). Full-scale validation of an algal productivity model including nitrogen limitation. Algal Research, 31, 377–386. doi:10.1016/j.algal.2018.02.010
  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25, 207–210. doi:10.1016/j.biotechadv.2006.11.002
  • Ben-Amotz, A. (1993). Production of β-carotene and vitamine by the halotolerant algae Dunaliella. In O. Ahaway & Zabrosky (Eds.), Marine biotechnology (pp. 411–417). New- York: Plenum Press. doi:10.1007/978-1-4899-2391-2_11
  • Ben-Amotz, A. (1995). New mode of Dunaliella biotechnology: Two-phase growth for β-carotene production. Journal of Applied Phycology, 7, 65–68. doi:10.1007/BF00003552
  • Ben-Amotz, A. (1996). Effect of low temperature on the stereoisomer composition of β-carotene in the halotolerant alga Dunaliella bardawil (Chlorophyta). Journal of Phycology, 32, 272–275. doi:10.1111/j.0022-3646.1996.00272.x
  • Ben-Amotz, A., & Avron, M. (1989a). The biotechnology of mass culturing of Dunaliella for products of commercial interest. In R. C. Cresswell, T. A. V. Ress, & N. Shah (Eds.), Algal and Cyanobacterial Biotechnology (pp. 90–114). London, England: Longman Scientific and Technical Press.
  • Ben-Amotz, A., & Avron, M. (1989b). The wavelength dependence of massive carotene synthesis in Dunaliella bardawil (Chlorophyceae). Journal of Phycology, 25, 175–178. doi:10.1111/j.0022-3646.1989.00175.x
  • Ben-Amotz, A., & Avron, M. (1990). The biotechnology of cultivating the halotolerant alga Dunaliella. Trends in Biotechnology, 8, 121–126. doi:10.1016/0167-7799(90)90152-N
  • Ben-Amotz, A., Katz, A., & Avron, M. (1982). Accumulation of b-carotene in halotolerant algae: Purification and characterization of b-carotene-rich globules from Dunaliella bardawil (chlorophyceae). Journal of Phycology, 18, 529–537. doi:10.1111/j.1529-8817.1982.tb03219.x
  • Ben-Amotz, A., Lers, A., & Avron, M. (1988). Stereoisomers of β-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiology, 86, 1286–1291. doi:10.1104/pp.86.4.1286
  • Ben-Amotz, A., & Shaish, A. (1992). B-carotene biosynthesis. In M. Avron & A. Ben-Amotz (Eds.), Dunaliella: Physiology, biochemistry, and biotechnology (pp. 205–216). Boca Raton: CRC press.
  • Ben-Amotz, A., Shaish, A., & Avron, M. (1991). The biotechnology of cultivating Dunaliella for production of β-carotene rich algae. Bioresource Technology, 38, 233–235. doi:10.1016/0960-8524(91)90160-L
  • Benhima, R., El Arroussi, H., Kadmiri, I. M., El Mernissi, N., Wahby, I. … Bendaou, N. (2018). Nitrate reductase inhibition induces lipid enhancement of Dunaliella tertiolecta for biodiesel production. Scientific World Journal, 2018, 1–8. doi:10.1155/2018/6834725
  • Bental, M., Pick, U., Avron, M., & Degani, H. (1990). The role of intracellular orthophosphate in triggering osmoregulation in the alga Dunaliella salina. European Journal of Biochemistry, 188, 117–122. doi:10.1111/j.1432-1033.1990.tb15378.x
  • Bergmann, P., Ripplinger, P., Beyer, L., & Trösch, W. (2013). Disposable flat panel airlift photobioreactors. Chemie Ingenieur Technik, 85, 202–205. doi:10.1002/cite.201200132
  • Besson, A., Formosa-Dague, C., & Guiraud, P. (2019). Flocculation-flotation harvesting mechanism of Dunaliella salina: From nanoscale interpretation to industrial optimization. Water Research, 155, 352–361. doi:10.1016/j.watres.2019.02.043
  • Besson, A., & Guiraud, P. (2013). High-Ph-induced flocculation–flotation of the hypersaline microalga Dunaliella salina. Bioresource Technology, 147, 464–470. doi:10.1016/j.biortech.2013.08.053
  • Bloch, K. (1992). Sterol molecule: Structure, biosynthesis, and function. Steroids, 57, 378–383. doi:10.1016/0039-128X(92)90081-J
  • Borowitzka, M. A. (1990). The mass culture of Dunaliella salina. Technical Resource Paper, FAO Network of Agriculture Centers in Asia, 63–80.
  • Borowitzka, M. A. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 7, 3–15. doi:10.1007/BF00003544
  • Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70, 313–321. doi:10.1016/S0168-1656(99)00083-8
  • Borowitzka, L. J., & Borowitzka, M. A. (1990). Commercial production of b-carotene by Dunalella salina in open ponds. Bulletin of Marine Science, 47, 244–252.
  • Borowitzka, M. A., & Borowitzka, L. J. (1987). Limits to growth and carotenogenesis in laboratory and large-scale outdoors of Dunalella salina. In T. Stadler, J. Mollion, M-C. Verdus, Y. Karamanos, H. Morvan & D. Christiaen (Eds.), Algal biotechnology (pp. 345–402). Essex, UK: Elsevier Applied Science.
  • Borowitzka, M. A., & Borowitzka, L. J. (1988). Algal growth media sources of algal culture. In M. A. Borowitzka & L. J. Borowitzka (Eds.), Micro-algal Biotechnology (pp. 465–465). Cambridge, UK: Cambridge University Press.
  • Borowitzka, M., & Borowitzka, L. J. (1989). Beta-carotene (provitamin A) with algae. Biotechnology of Vitamins, Pigments and Growth Factors, 1, 15–26.
  • Borowitzka, M. A., & Siva, C. J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19, 567–590. doi:10.1007/s10811-007-9171-x
  • Buchheim, M. A., Kirkwood, A. E., Buchheim, J. A., Verghese, B., & Henley, W. J. (2010). Hypersaline soil supports a diverse community of Dunaliella (Chlorophyceae). Journal of Phycology, 46, 1038–1047. doi:10.1111/j.1529-8817.2010.00886.x
  • Butinar, L., Sonjak, S., Zalar, P., Plemenitaš, A., & Gunde-Cimerman, N. (2005). Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Botanica Marina, 48, 73–79. doi:10.1515/BOT.2005.007
  • Cakmak, Y. S., Kaya, M., & Asan-Ozusaglam, M. (2014). Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga. Excli Journal, 13, 679–690. doi:10.17877/DE290R-6669
  • Camacho, F., Macedo, A., & Malcata, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Marine Drugs, 17, 312. doi:10.3390/md17060312
  • Capa-Robles, W., García-Mendoza, E., & Paniagua-Michel, J. D. J. (2021). Enhanced β-carotene and biomass production by induced mixotrophy in Dunaliella salina across a combined strategy of glycerol, salinity, and light. Metabolites, 11, 866. doi:10.3390/metabo11120866
  • Çelekli, A., & Dönmez, G. (2006). Effect of pH, light intensity, salt and nitrogen concentrations on growth and β-carotene accumulation by a new isolate of Dunaliella sp. World Journal of Microbiology and Biotechnology, 22, 183–189. doi:10.1007/s11274-005-9017-0
  • Cereceda, P., Larrain, H., Osses, P., Farías, M., & Egaña, I. (2008). The climate of the coast and fog zone in the Tarapacá Region, Atacama Desert, Chile. Atmospheric Research, 87, 301–311. doi:10.1016/j.atmosres.2007.11.011
  • Chae, Y., Kim, D., & An, Y.-J. (2019). Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio. Aquatic Toxicology, 216, 105296. doi:10.1016/j.aquatox.2019.105296
  • Chai, X.-J., Chen, H.-X., Xu, W.-Q., & Xu, Y.-W. (2013). Expression of soybean Kunitz trypsin inhibitor gene SKTI in Dunaliella salina. Journal of Applied Phycology, 25, 139–144. doi:10.1007/s10811-012-9847-8
  • Chang, T., Ohta, S., Ikegami, N., Miyata, H., Kashimoto, T., & Kondo, M. (1993). Antibiotic substances produced by a marine green alga, Dunaliella primolecta. Bioresource Technology, 44, 149–153. doi:10.1016/0960-8524(93)90189-I
  • Chavoshi, Z. Z., & Shariati, M. (2019). Lipid production in Dunaliella salina under autotrophic, heterotrophic, and mixotrophic conditions. Biologia, 74, 1579–1590. doi:10.2478/s11756-019-00336-6
  • Chen, J., Jiang, J. G., & Lin, Q. S. (2007). Technical note: Toxicity tests of typical mutagenic phenols on Dunaliella salina. Transactions of the ASABE, 50, 685–688. doi:10.13031/2013.22657
  • Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C. … Chang, J.-S. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62. doi:10.1016/j.biortech.2017.01.006
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306. doi:10.1016/j.biotechadv.2007.02.001
  • Chow, Y. Y. S., Goh, S. J. M., Su, Z., Ng, D. H. P., Lim, C. Y. … Lee, Y. K. (2013). Continual production of glycerol from carbon dioxide by Dunaliella tertiolecta. Bioresource Technology, 136, 550–555. doi:10.1016/j.biortech.2013.03.040
  • Coleman, R. A., & Lee, D. P. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research, 43, 134–176. doi:10.1016/S0163-7827(03)00051-1
  • Colusse, G. A., Mendes, C. R. B., Duarte, M. E. R., Carvalho, J. C. D., & Noseda, M. D. (2020). Effects of different culture media on physiological features and laboratory scale production cost of Dunaliella salina. Biotechnology Reports, 27, e00508. doi:10.1016/j.btre.2020.e00508
  • Cunningham, F. X., Pogson, B., Sun, Z., McDonald, K. A., DellaPenna, D., & Gantt, E. (1996). Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. The Plant Cell, 8, 1613–1626. doi:10.1105/tpc.8.9.1613
  • Cycil, L. M., Hausrath, E. M., Ming, D. W., Adcock, C. T., Raymond, J., Remias, D., & Ruemmele, W. P. (2021). Investigating the growth of algae under low atmospheric pressures for potential food and oxygen production on mars. investigating the growth of algae under low atmospheric pressures for potential food and oxygen production on mars. Frontiers in Microbiology, 12, 12. doi:10.3389/fmicb.2021.733244
  • Dahmen-Ben Moussa, I., Athmouni, K., Chtourou, H., Ayadi, H., Sayadi, S., & Dhouib, A. (2018). Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution. Journal of Applied Phycology, 30, 931–941. doi:10.1007/s10811-017-1315-z
  • Duan, X., Xie, C., Hill, D. R. A., Barrow, C. J., Dunshea, F. R., Martin, G. J. O., & Suleria, H. A. R. (2023). Bioaccessibility, bioavailability and bioactivities of carotenoids in microalgae: A review. Food Reviews International, 1–30. doi:10.1080/87559129.2023.2165095
  • Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Chidambara Murthy, K. N., & Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends in Food Science & Technology, 16, 389–406. doi:10.1016/j.tifs.2005.02.006
  • Dunal, F. (1838). Extrait d’un mémoire sur les algues qui colorent en rouge certains eaux des marais salants méditerranéens. Ann Sc Nat Bot Sér, 18, 172.
  • Du, J., Wang, S., You, H., & Zhao, X. (2013). Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environmental Toxicology and Pharmacology, 36, 451–462. doi:10.1016/j.etap.2013.05.007
  • el Agawany, N., Kaamoush, M., El-Zeiny, A., & Ahmed, M. (2021). Effect of heavy metals on protein content of marine unicellular green alga Dunaliella tertiolecta. Environmental Monitoring and Assessment, 193. doi:10.1007/s10661-021-09353-y
  • EL Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., EL Mernissi, N. … Smouni, A. (2018). Dunaliella salina exopolysaccharides: A promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, 30, 2929–2941. doi:10.1007/s10811-017-1382-1
  • Feltl, L., Pacakova, V., Stulik, K., & Volka, K. (2006). Reliability of carotenoid analyses: A review. Current Analytical Chemistry, 1, 93–102. doi:10.2174/1573411052948424
  • Feng, S., Li, X., Xu, Z., & Qi, J. (2014). Dunaliella salina as a novel host for the production of recombinant proteins. Applied Microbiology and Biotechnology, 98, 4293–4300. doi:10.1007/s00253-014-5636-4
  • Feng, S., Xue, L., Liu, H., & Lu, P. (2009). Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Molecular Biology Reports, 36, 1433–1439. doi:10.1007/s11033-008-9333-1
  • Fernandes, P., & Cabral, J. M. S. (2007). Phytosterols: Applications and recovery methods. Bioresource Technology, 98, 2335–2350. doi:10.1016/j.biortech.2006.10.006
  • Francavilla, M., Kamaterou, P., Intini, S., Monteleone, M., & Zabaniotou, A. (2015). Cascading microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Research, 11, 184–193. doi:10.1016/j.algal.2015.06.017
  • Francavilla, M., Trotta, P., & Luque, R. (2010). Phytosterols from Dunaliella tertiolecta and Dunaliella salina: A potentially novel industrial application. Bioresource Technology, 101, 4144–4150. doi:10.1016/j.biortech.2009.12.139
  • Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó. S., Palsson, B. Ø., & Brynjólfsson, S. (2013). Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology, 97, 2395–2403. doi:10.1007/s00253-012-4502-5
  • Gamlieli-Bonshtein, I., Korin, E., & Cohen, S. (2002). Selective separation ofcis-trans geometrical isomers of b-carotene via CO2 supercritical fluid extraction. Biotechnology and Bioengineering, 80, 169–174. doi:10.1002/bit.10357
  • Gao, M., Li, F., Su, R., Wang, K., Li, X., & Lu, W. (2014). Antifouling potential of the marine microalga Dunaliella salina. World Journal of Microbiology and Biotechnology, 30, 2899–2905. doi:10.1007/s11274-014-1717-x
  • García, F., Freile-Pelegrín, Y., & Robledo, D. (2007). Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresource Technology, 98, 1359–1365. doi:10.1016/j.biortech.2006.05.051
  • Garg, S., Li, Y., Wang, L., & Schenk, P. M. (2012). Flotation of marine microalgae: Effect of algal hydrophobicity. Bioresource Technology, 121, 471–474. doi:10.1016/j.biortech.2012.06.111
  • Ghoshal, D., Mach, D., Agarwal, M., Goyal, A., & Goyal, A. (2002). Osmoregulatory isoform of dihydroxyacetone phosphate reductase from Dunaliella tertiolecta: Purification and characterization. Protein Expression and Purification, 24, 404–411. doi:10.1006/prep.2001.1588
  • Gim, G. H., Kim, J. K., Kim, H. S., Kathiravan, M. N., Yang, H., Jeong, S.-H., & Kim, S. W. (2014). Comparison of biomass production and total lipid content of freshwater green microalgae cultivated under various culture conditions. Bioprocess and Biosystems Engineering, 37, 99–106. doi:10.1007/s00449-013-0920-8
  • Gonabadi, E., Samadlouie, H. R., & Shafafi Zenoozian, M. (2022). Optimization of culture conditions for enhanced Dunaliella salina productions in mixotrophic culture. Preparative Biochemistry and Biotechnology, 52, 154–162. doi:10.1080/10826068.2021.1922917
  • Gonçalves, A. M., Pedro, A. Q., Maia, C., Sousa, F., Queiroz, J. A., & Passarinha, L. A. (2013). Pichia pastoris: A recombinant microfactory for antibodies and human membrane proteins. Journal of Microbiology and Biotechnology, 23, 587–601. doi:10.4014/jmb.1210.10063
  • Goncalves, E. C., Wilkie, A. C., Kirst, M., & Rathinasabapathi, B. (2016). Metabolic regulation of triacylglycerol accumulation in the green algae: Identification of potential targets for engineering to improve oil yield. Plant Biotechnology Journal, 14, 1649–1660. doi:10.1111/pbi.12523
  • Gonzalez, M. A., Coleman, A. W., Gomez, P. I., & Montoya, R. (2001). Phylogenetic relationship among various strains of Dunaliella (Chlorophyceae) based on nuclear its rDNA sequences. Journal of Phycology, 37, 604–611. doi:10.1046/j.1529-8817.2001.037004604.x
  • Guan, Z. J., Guo, B., Huo, Y. L., Guan, Z. P., Dai, J. K., & Wei, Y. H. (2013). Recent advances and safety issues of transgenic plant-derived vaccines. Applied Microbiology and Biotechnology, 97, 2817–2840. doi:10.1007/s00253-012-4566-2
  • Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith & M. H. Chanley (Eds.), Culture of Marine Invertebrate Animals (pp. 29–60). Springer US. doi:10.1007/978-1-4615-8714-9_3
  • Gupta, S. K., Trivedi, D., Srivastava, S., Joshi, S., Halder, N., & Verma, S. D. (2003). Lycopene attenuates oxidative stress induced experimental cataract development: An in vitro and in vivo study. Nutrition, 19, 794–799. doi:10.1016/S0899-9007(03)00140-0
  • Hadi, M. R., Shariati, M., & Afsharzadeh, S. (2008). Microalgal biotechnology: Carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt marsh, Iran. Biotechnology and Bioprocess Engineering, 13, 540–544. doi:10.1007/s12257-007-0185-7
  • Harvey, P. J., & Ben-Amotz, A. (2020). Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production. Algal Research, 50, 102002. doi:10.1016/j.algal.2020.102002
  • Havas, F., Krispin, S., Cohen, M., Loing, E., Farge, M., Suere, T., & Attia-Vigneau, J. (2022). A Dunaliella salina extract counteracts skin aging under intense solar irradiation thanks to its antiglycation and anti-inflammatory properties. Marine Drugs, 20, 104. doi:10.3390/md20020104
  • Hejazi, M. A., de Lamarliere, C., Rocha, J. M. S., Vermuë, M., Tramper, J., & Wijffels, R. H. (2002). Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnology and Bioengineering, 79, 29–36. doi:10.1002/bit.10270
  • Hejazi, M. A., Holwerda, E., & Wijffels, R. H. (2004). Milking microalga Dunaliella salina for β-carotene production in two-phase bioreactors. Biotechnology and Bioengineering, 85, 475–481. doi:10.1002/bit.10914
  • He, Q., Lin, Y., Tan, H., Zhou, Y., Wen, Y. … Zhang, Q. (2020). Transcriptomic profiles of Dunaliella salina in response to hypersaline stress. BMC Genomics, 21, 1–17. doi:10.1186/s12864-020-6507-2
  • He, Q., Qiao, D., Bai, L., Zhang, Q., Yang, W., Li, Q., & Cao, Y. (2007). Cloning and characterization of a plastidic glycerol 3-phosphate dehydrogenase cDNA from Dunaliella salina. Journal of Plant Physiology, 164, 214–220. doi:10.1016/j.jplph.2006.04.004
  • He, Q., Qiao, D., Zhang, Q., Li, Y., Xu, H. … Cao, Y. (2004). Cloning and expression study of a putative high-affinity nitrate transporter gene from Dunaliella salina. Journal of Applied Phycology, 16, 395–400. doi:10.1023/B:JAPH.0000047950.76549.ce
  • Herrero, M., Jaime, L., Martín-Álvarez, P. J., Cifuentes, A., & Ibáñez, E. (2006). Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. Journal of Agricultural and Food Chemistry, 54, 5597–5603. doi:10.1021/jf060546q
  • Hirschberg, J. (2001). Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology, 4, 210–218. doi:10.1016/S1369-5266(00)00163-1
  • Hirschberg, J., Cohen, M., Harker, M., Lotan, T., Mann, V., & Pecker, I. (1997). Molecular genetics of the carotenoid biosynthesis pathway in plants and algae. Pure and Applied Chemistry, 69, 2151–2158. doi:10.1351/pac199769102151
  • Hosseini Tafreshi, A., & Shariati, M. (2009). Dunaliella biotechnology: Methods and applications. Journal of Applied Microbiology, 107, 14–35. doi:10.1111/j.1365-2672.2009.04153.x
  • Hu, C.-C., Lin, J.-T., Lu, F.-J., Chou, F.-P., & Yang, D.-J. (2008). Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chemistry, 109, 439–446. doi:10.1016/j.foodchem.2007.12.043
  • Huntley, M. E., & Redalje, D. G. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaptation Strategies for Global Change, 12, 573–608. doi:10.1007/s11027-006-7304-1
  • Iglesias, M. J., Soengas, R., Probert, I., Guilloud, E., Gourvil, P. … Ortiz, F. L. (2019). NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp ., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea). Phytochemistry, 164, 192–205. doi:10.1016/j.phytochem.2019.05.001
  • Ismaiel, M. M. S., El-Ayouty, Y. M., Said, A. A., & Fathey, H. A. (2018). Transformation of Dunaliella parva with PSY gene: Carotenoids show enhanced antioxidant activity under polyethylene glycol and calcium treatments. Biocatalysis and Agricultural Biotechnology, 16, 378–384. doi:10.1016/j.bcab.2018.09.011
  • Jayappriyan, K. R., Rajkumar, R., & Rengasamy, R. (2011). Unusual occurrence of non carotenogenic strains of Dunaliella bardawil and Dunaliella parva in India. Journal of Basic Microbiology, 51, 473–483. doi:10.1002/jobm.201000384
  • Jayappriyan, K. R., Rajkumar, R., Venkatakrishnan, V., Nagaraj, S., & Rengasamy, R. (2013). In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells. Biomedicine & Preventive Nutrition, 3, 99–105. doi:10.1016/j.bionut.2012.08.003
  • Jin, E. S., & Melis, A. (2003). Microalgal biotechnology: Carotenoid production by the green algae Dunaliella salina. Biotechnology and Bioprocess Engineering, 8, 331–337. doi:10.1007/BF02949276
  • Jin, E., & Polle, J. (2009). Carotenoid Biosynthesis in Dunaliella (Chlorophyta). In A. Ben-Amotz, J. E. W. Polle, & D. V. S. Rao (Eds.), The Alga Dunaliella (pp. 147–171). Science Publishers.
  • Johnson, M. K., Johnson, E. J., MacElroy, R. D., Speer, H. L., & Bruff, B. S. (1968). Effects of salts on the halophilic alga Dunaliella viridis. Journal of Bacteriology, 95, 1461–1468. doi:10.1128/JB.95.4.1461-1468.1968
  • Jones, H. D., & Sparks, C. A. (2009). Stable transformation of plants. In J. P. Gustafson, P. Langridge, & D. J. Somers (Eds.), Methods in Molecular Biology (Vol. 513, pp. 111–130). Humana Press. doi:10.1007/978-1-59745-427-8_7
  • Katz, A., Paz, Y., & Pick, U. (2019). Salinity tolerance and iron deprivation resistance mechanisms revealed by proteomic analyzes in Dunaliella salina. In A. Ben-Amotz (Ed.), The Alga Dunaliella (1st ed. pp. 341–358). CRC Press. doi:10.1201/9780429061639-14
  • Katz, A., & Pick, U. (2001). Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella. Biochimica Et Biophysica Acta (BBA) - Bioenergetics, 1504, 423–431. doi:10.1016/S0005-2728(01)00157-8
  • Khadim, S. R., Singh, P., Singh, A. K., Tiwari, A., Mohanta, A., & Asthana, R. K. (2018). Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting. Bioresource Technology, 270, 20–29. doi:10.1016/j.biortech.2018.08.071
  • Khramov, D. E., Matalin, D. A., Karpichev, I. V., Balnokin, Y. V., & Popova, L. G. (2019). Expression of P-Type atpases of marine green microalga Dunaliella maritima under hyperosmotic salt shock. Doklady Biochemistry and Biophysics, 488, 327–331. doi:10.1134/S1607672919050119
  • Klausner, A. (1986). Algaculture: Food for Thought. Bio/technology, 4, 947–953. doi:10.1038/nbt1186-947
  • Knaut, J., & Richtler, H. J. (1985). Trends in industrial uses of palm and lauric oils. Journal of the American Oil Chemists’ Society, 62, 317–327. doi:10.1007/BF02541398
  • Kocberber Kilic, N., Erdem, K., & Donmez, G. (2018). Bioactive compounds produced by Dunaliella species, antimicrobial effects and optimization of the efficiency. Turkish Journal of Fisheries and Aquatic Sciences, 19, 923–933. doi:10.4194/1303-2712-v19_11_04
  • Koh, L. P., & Ghazoul, J. (2008). Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation, 141, 2450–2460. doi:10.1016/j.biocon.2008.08.005
  • Kroumov, A. D., Módenes, A. N., Trigueros, D. E. G., Espinoza-Quiñones, F. R., Borba, C. E., Scheufele, F. B., & Hinterholz, C. L. (2016). A systems approach for CO2 fixation from flue gas by microalgae—Theory review. Process Biochemistry, 51, 1817–1832. doi:10.1016/j.procbio.2016.05.019
  • Kumudha, A., & Sarada, R. (2016). Characterization of vitamin B12 in Dunaliella salina. Journal of Food Science and Technology, 53, 888–894. doi:10.1007/s13197-015-2005-y
  • Laakel, M., Lebrihi, A., Khaoua, S., Schneider, F., Lefebvre, G., & Germain, P. (1994). Relationship between valine, fatty acids, and spiramycin biosynthesis in Streptomyces ambofaciens. Canadian Journal of Microbiology, 40, 672–676. doi:10.1139/m94-106
  • Lamers, P. P., Janssen, M., De Vos, R. C. H., Bino, R. J., & Wijffels, R. H. (2008). Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends in Biotechnology, 26, 631–638. doi:10.1016/j.tibtech.2008.07.002
  • Lamers, P. P., van de Laak, C. C. W., Kaasenbrood, P. S., Lorier, J., Janssen, M. … Wijffels, R. H. (2010). Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnology and Bioengineering, 106, 638–648. doi:10.1002/bit.22725
  • Lange, B. M., Rujan, T., Martin, W., & Croteau, R. (2000). Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proceedings of the National Academy of Sciences, 97, 13172–13177. doi:10.1073/pnas.240454797
  • León-Bañares, R., González-Ballester, D., Galván, A., & Fernández, E. (2004). Transgenic microalgae as green cell-factories. Trends in Biotechnology, 22, 45–52. doi:10.1016/j.tibtech.2003.11.003
  • Lewis, M. A., Weber, D. E., & Stanley, R. S. (1998). Comparative animal and plant toxicities of 10 treated effluents discharged to near-coastal areas of the Gulf of Mexico. Water Environment Research, 70, 1108–1117. doi:10.2175/106143098X123471
  • Lichtenthaler, H. K., Schwender, J., & Müller, C. (1998). The 1-deoxy-d-xylulose-5-phosphate pathway for biosynthesis of carotenoids and other plastidic isoprenoids. In G. Garab (Ed.), Photosynthesis: Mechanisms and Effects (pp. 3215–3220). Springer Netherlands. doi:10.1007/978-94-011-3953-3_751
  • Li, Q., Gao, X., Sun, Y., Zhang, Q., Song, R., & Xu, Z. (2006). Isolation and characterization of a sodium-dependent phosphate transporter gene in Dunaliella viridis. Biochemical and Biophysical Research Communications, 340, 95–104. doi:10.1016/j.bbrc.2005.11.144
  • Lin, H., & Lee, Y. K. (2017). Genetic engineering of medium-chain-length fatty acid synthesis in Dunaliella tertiolecta for improved biodiesel production. Journal of Applied Phycology, 29, 2811–2819. doi:10.1007/s10811-017-1210-7
  • Lin, H., Shen, H., & Lee, Y. K. (2018). Cellular and molecular responses of Dunaliella tertiolecta by expression of a plant medium chain length fatty acid specific acyl-ACP thioesterase. Frontiers in Microbiology, 9, 1–17. doi:10.3389/fmicb.2018.00619
  • Lippold, F., Vom Dorp, K., Abraham, M., Hölzl, G., Wewer, V. … Dörmann, P. (2012). Fatty acid phytyl ester synthesis in chloroplasts of arabidopsis. The Plant Cell, 24, 2001–2014. doi:10.1105/tpc.112.095588
  • Liu, L., Yang, H., Shin, H. D., Chen, R. R., Li, J., Du, G., & Chen, J. (2013). How to achieve high-level expression of microbial enzymes: Strategies and perspectives. Bioengineered, 4, 212–223. doi:10.4161/bioe.24761
  • Lyukevich, A. A., Mouradyan, E. A., & Los, D. A. (2003). Molecular cloning and stress-dependent expression of a gene encoding ω3-fatty acid desaturase in the microalga Dunaliella salina. Russian Journal of Plant Physiology, 50, 481–486. doi:10.1023/A:1024764522062
  • Madeira, M. S., Cardoso, C., Lopes, P. A., Coelho, D., Afonso, C., Bandarra, N. M., & Prates, J. A. M. (2017). Microalgae as feed ingredients for livestock production and meat quality: A review. Livestock Science, 205, 111–121. doi:10.1016/j.livsci.2017.09.020
  • Matalin, D. A., Khramov, D. E., Shuvalov, A. V., Volkov, V. S., Balnokin, Y. V., & Popova, L. G. (2021). Cloning and characterization of two putative p-type ATPases from the marine microalga Dunaliella maritima similar to plant H+-ATPases and their gene expression analysis under conditions of hyperosmotic salt shock. Plants, 10, 2667. doi:10.3390/plants10122667
  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232. doi:10.1016/j.rser.2009.07.020
  • Matsumoto, G. I., Shioya, M., & Nagashima, H. (1984). Occurrence of 2-hydroxy acids in microalgae. Phytochemistry, 23, 1421–1423. doi:10.1016/S0031-9422(00)80478-1
  • Mayne, S. T., Janerich, D. T., Greenwald, P., Chorost, S., Tucci, C. … McKneally, M. F. (1994). Dietary beta carotene and lung cancer risk in U.S. nonsmokers. JNCI Journal of the National Cancer Institute, 86, 33–38. doi:10.1093/jnci/86.1.33
  • Michaud, D. S., Feskanich, D., Rimm, E. B., Colditz, G. A., Speizer, F. E., Willett, W. C., & Giovannucci, E. (2000). Intake of specific carotenoids and risk of lung cancer in 2 prospective US cohorts. The American Journal of Clinical Nutrition, 72, 990–997. doi:10.1093/ajcn/72.4.990
  • Monte, J., Ribeiro, C., Parreira, C., Costa, L., Brive, L. … Crespo, J. G. (2020). Biorefinery of Dunaliella salina: Sustainable recovery of carotenoids, polar lipids and glycerol. Bioresource Technology, 297. doi:10.1016/j.biortech.2019.122509
  • Monte, J., Sá, M., Galinha, C. F., Costa, L., Hoekstra, H., Brazinha, C., & Crespo, J. G. (2018). Harvesting of Dunaliella salina by membrane filtration at pilot scale. Separation and Purification Technology, 190, 252–260. doi:10.1016/j.seppur.2017.08.019
  • Moulton, T. P., & Burford, M. A. (1990). The mass culture of Dunaliella viridis (Volvocales, Chlorophyta) for oxygenated carotenoids: Laboratory and pilot plant studies. Hydrobiologia, 204, 401–408. doi:10.1007/BF00040263
  • Naik, P. S., Chanemougasoundharam, A., Khurana, S. M. P., & Kalloo, G. (2003). Genetic manipulation of carotenoid pathway in higher plants. In Current Science (Vol. 85, pp. 1423–1430). Current Science Association. doi:10.2307/24108823.
  • Newman, J. D., & Chappell, J. (1999). Isoprenoid biosynthesis in plants: Carbon partitioning within the cytoplasmic pathway. Critical Reviews in Biochemistry and Molecular Biology, 34, 95–106. doi:10.1080/10409239991209228
  • Ng, D. H. P., Low, C. S., Chow, Y. Y. S., & Lee, Y. K. (2014). Intracellular glycerol accumulation in light limited Dunaliella tertiolecta culture is determined by partitioning of glycerol across the cell membrane. FEMS Microbiology Letters, 357, n/a–n/a. doi:10.1111/1574-6968.12514
  • Nishshanka, G. K. S. H., Anthonio, R. A. D. P., Nimarshana, P. H. V., Ariyadasa, T. U., & Chang, J.-S. (2022). Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochemical Engineering Journal, 187, 108593. doi:10.1016/j.bej.2022.108593
  • Nonomura, A. M. (1987). Process for producing a naturally-derived carotene⁄oil composition by direct extraction from algae. US Patent 4680314.
  • Ohlrogge, J. B. (1994). Design of new plant products: Engineering of fatty acid metabolism. Plant Physiology, 104, 821–826. doi:10.1104/pp.104.3.821
  • Ohlrogge, J., & Browse, J. (1995). Lipid biosynthesis. The Plant Cell, 7, 957–970. doi:10.1105/tpc.7.7.957
  • Oren, A. (2005). A hundred years of Dunaliella research: 1905-2005. Saline Systems, 1, 2. doi:10.1186/1746-1448-1-2
  • Oren, A. (2009). Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquatic Microbial Ecology, 56, 193–204. doi:10.3354/ame01297
  • Oren, A. (2014). The ecology of Dunaliella in high-salt environments. Journal of Biological Research-Thessaloniki, 21, 23. doi:10.1186/s40709-014-0023-y
  • Park, S., Lee, Y., & Jin, E. (2013). Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis. ALGAE, 28, 203–211. doi:10.4490/algae.2013.28.2.203
  • Pasquet, V., Morisset, P., Ihammouine, S., Chepied, A., Aumailley, L. … Picot, L. (2011). Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Marine Drugs, 9, 819–831. doi:10.3390/md9050819
  • Patrick, L. (2000). Beta-carotene: The controversy continues. Alternative Medicine Review, 5, 530–545.
  • Pick, U. (1999). Dunaliella acidophila — a most extreme acidophilic alga. Enigmatic Microorganisms and Life in Extreme Environments, 465–478. doi:10.1007/978-94-011-4838-2_36
  • Pick, U., & Avidan, O. (2017). Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliella tertiolecta. Journal of Experimental Botany, 68, 4939–4950. doi:10.1093/jxb/erx280
  • Pirwitz, K., Rihko-Struckmann, L., & Sundmacher, K. (2015). Comparison of flocculation methods for harvesting Dunaliella. Bioresource Technology, 196, 145–152. doi:10.1016/j.biortech.2015.07.032
  • Polle, J., Tran, D., & Ben-Amotz, A. (2009). History, distribution, and habitats of algae of the genus Dunaliella Teodoresco (Chlorophyceae). In A. Ben-Amotz, J. Polle, D. Subba Rao, & N. Enfield (Eds.), The Alga Dunaliella. Biodiversity, physiology, genomics and biotechnology (pp. 1–13). Boca Raton, USA: Science Publishers.
  • Pragya, N., Pandey, K. K., & Sahoo, P. K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable and Sustainable Energy Reviews, 24, 159–171. doi:10.1016/j.rser.2013.03.034
  • Primrose, S. (1991). Molecular biotechnology (2nd ed.). Oxford: Blackwell Science.
  • Puente-Sánchez, F., Olsson, S., & Aguilera, A. (2016). Comparative transcriptomic analysis of the response of Dunaliella acidophila (Chlorophyta) to short-term cadmium and chronic natural metal-rich water exposures. Microbial Ecology, 72, 595–607. doi:10.1007/s00248-016-0824-7
  • Pulz, O. (2001). Photobioreactors: Production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57, 287–293. doi:10.1007/s002530100702
  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648. doi:10.1007/s00253-004-1647-x
  • Raja, R., Hemaiswarya, S., & Rengasamy, R. (2007). Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology, 74, 517–523. doi:10.1007/s00253-006-0777-8
  • Rittschof, D., Lai, C.-H., Kok, L.-M., & Teo, S. L.-M. (2003). Pharmaceuticals as antifoulants: Concept and principles. Biofouling, 19, 207–212. doi:10.1080/0892701021000083769
  • Rohmer, M., Knani, M., Simonin, P., Sutter, B., & Sahm, H. (1993). Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal, 295, 517–524. doi:10.1042/bj2950517
  • Ruane, M. (1974). Extraction of Caroteniferous Materials from Algae. Australian Patent 7239574.
  • Saçan, M. T., & Balcıoğlu, I. A. (2006). A case study on algal response to raw and treated effluents from an aluminum plating plant and a pharmaceutical plant. Ecotoxicology & Environmental Safety, 64, 234–243. doi:10.1016/j.ecoenv.2005.03.017
  • Sandmann, G. (2001). Carotenoid biosynthesis and biotechnological application. Archives of Biochemistry and Biophysics, 385, 4–12. doi:10.1006/abbi.2000.2170
  • Santín-Montanyá, I., Sandín-España, P., García Baudín, J. M., & Coll-Morales, J. (2007). Optimal growth of Dunaliella primolecta in axenic conditions to assay herbicides. Chemosphere, 66, 1315–1322. doi:10.1016/j.chemosphere.2006.07.019
  • Sathya, A. B., Thirunavukkarasu, A., Nithya, R., Nandan, A., Sakthishobana, K. … Deepanraj, B. (2023). Microalgal biofuel production: Potential challenges and prospective research. Fuel, 332, 126199. doi:10.1016/j.fuel.2022.126199
  • Schmidt-Dannert, C. (2000). Engineering novel carotenoids in microorganisms. Current Opinion in Biotechnology, 11, 255–261. doi:10.1016/S0958-1669(00)00093-8
  • Schubert, B. A., Timofeeff, M. N., Lowenstein, T. K., & Polle, J. E. W. (2010). Dunaliella cells in fluid inclusions in halite: Significance for long-term survival of prokaryotes. Geomicrobiology Journal, 27, 61–75. doi:10.1080/01490450903232207
  • Schwender, J., Seemann, M., Lichtenthaler, H. K., & Rohmer, M. (1996). Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochemical Journal, 316, 73–80. doi:10.1042/bj3160073
  • Seemann, M., Tse Sum Bui, B., Wolff, M., Miginiac-Maslow, M., & Rohmer, M. (2006). Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: Direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Letters, 580, 1547–1552. doi:10.1016/j.febslet.2006.01.082
  • Sekler, I., & Pick, U. (1993). Purification and properties of a plasma membrane H+-ATPase from the extremely acidophilic alga Dunaliella acidophila. Plant Physiology, 101, 1055–1061. doi:10.1104/pp.101.3.1055
  • Shaish, A., Harari, A., Hananshvili, L., Cohen, H., Bitzur, R. … Harats, D. (2006). 9-cis β-carotene-rich powder of the alga Dunaliella bardawil increases plasma HDL-cholesterol in fibrate-treated patients. Atherosclerosis, 189, 215–221. doi:10.1016/j.atherosclerosis.2005.12.004
  • Shewmaker, C. K., Sheehy, J. A., Daley, M., Colburn, S., & Ke, D. Y. (1999). Seed-specific overexpression of phytoene synthase: Increase in carotenoids and other metabolic effects. Plant Journal, 20, 401–412. doi:10.1046/j.1365-313x.1999.00611.x
  • Siefermann-Harms, D., Joyard, J., & Douce, R. (1978). Light-induced changes of the carotenoid levels in chloroplast envelopes. Plant Physiology, 61, 530–533. doi:10.1104/pp.61.4.530
  • Silva, M. R. O. B. D., Moura, Y. A. S., Converti, A., Porto, A. L. F., Viana Marques, D. D. A., & Bezerra, R. P. (2021). Assessment of the potential of Dunaliella microalgae for different biotechnological applications: A systematic review. Algal Research, 58, 102396. doi:10.1016/j.algal.2021.102396
  • Singh, P., Baranwal, M., & Reddy, S. M. (2016). Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharmaceutical Biology, 54, 2269–2275. doi:10.3109/13880209.2016.1153660
  • Slocombe, S. P., Zhang, Q., Ross, M., Anderson, A., Thomas, N. J. … Day, J. G. (2015). Unlocking nature’s treasure-chest: Screening for oleaginous algae. Scientific Reports, 5, 9844. doi:10.1038/srep09844
  • Song, H. G., Byeon, S. Y., Chung, G. Y., Jung, S.-M., Choi, J. I., & Shin, H. S. (2018). A systematic correlation analysis of carotenoids, chlorophyll, non-pigmented cell mass, and cell number for the blueprint of Dunaliella salina culture in a photobioreactor. Bioprocess and Biosystems Engineering, 41, 1295–1303. doi:10.1007/s00449-018-1957-5
  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96. doi:10.1263/jbb.101.87
  • Stolz, P., & Obermayer, B. (2005). Manufacturing microalgae for skin care. Cosmetics and Toiletries, 120, 99–106.
  • Sui, Y., Muys, M., Vermeir, P., D’Adamo, S., & Vlaeminck, S. E. (2019). Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina. Bioresource Technology, 275, 145–152. doi:10.1016/j.biortech.2018.12.046
  • Sui, Y., & Vlaeminck, S. E. (2020). Dunaliella microalgae for nutritional protein: An undervalued asset. Trends in Biotechnology, 38, 10–12. doi:10.1016/j.tibtech.2019.07.011
  • Sun, Y., Yang, Z., Gao, X., Li, Q., Zhang, Q., & Xu, Z. (2005). Expression of foreign genes in Dunaliella by electroporation. Molecular Biotechnology, 30, 185–192. doi:10.1385/MB:30:3:185
  • Supamattaya, K., Kiriratnikom, S., Boonyaratpalin, M., & Borowitzka, L. (2005). Effect of a Dunaliella extract on growth performance, health condition, immune response and disease resistance in black tiger shrimp (Penaeus monodon). Aquaculture, 248, 207–216. doi:10.1016/j.aquaculture.2005.04.014
  • Takagi, M., Karseno, & Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101, 223–226. doi:10.1263/jbb.101.223
  • Takimura, O., Fuse, H., Murakami, K., Kamimura, K., & Yamaoka, Y. (1996). Uptake and reduction of arsenate by Dunaliella sp. Applied Organometallic Chemistry, 10, 753–756. doi:10.1002/(SICI)1099-0739(199611)10:9<753:AID-AOC573>3.0.CO;2-V
  • Talbot, P., & de la Noüe, J. (1993). Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions. Water Research, 27, 153–159. doi:10.1016/0043-1354(93)90206-W
  • Tan, C., Qin, S., Zhang, Q., Jiang, P., & Zhao, F. (2005). Establishment of a micro-particle bombardment transformation system for Dunaliella salina. Journal of Microbiology, 43, 361–365.
  • Taylor, R., & Fletcher, R. L. (1998). Cryopreservation of eukaryotic algae - a review of methodologies. Journal of Applied Phycology, 10, 481–501. doi:10.1023/A:1008094622412
  • Teodoresco, E. (1905). Organisation et développement du Dunaliella, nouveau genre de Volvocacée-Polyblepharidée. Beih Z Bot Centralbl, 18, 215–232.
  • Thakkar, M., Mitra, S., & Wei, L. (2016). Effect on growth, photosynthesis, and oxidative stress of single walled carbon nanotubes exposure to marine alga Dunaliella tertiolecta. Journal of Nanomaterials, 2016, 1–9. doi:10.1155/2016/8380491
  • Thomas, K. V., & Brooks, S. (2010). The environmental fate and effects of antifouling paint biocides. Biofouling, 26, 73–88. doi:10.1080/08927010903216564
  • Tillman, J. A., Seybold, S. J., Jurenka, R. A., & Blomquist, G. J. (1999). Insect pheromones - an overview of biosynthesis and endocrine regulation. Insect Biochemistry and Molecular Biology, 29, 481–514. doi:10.1016/S0965-1748(99)00016-8
  • Törnwall, M. E., Virtamo, J., Korhonen, P. A., Virtanen, M. J., Taylor, P. R., Albanes, D., & Huttunen, J. K. (2004). Effect of tocopherol and b-carotene supplementation on coronary heart disease during the 6-year post-trial follow-up in the ATBC study. European Heart Journal, 25, 1171–1178. doi:10.1016/j.ehj.2004.05.007
  • Tredici, M. R., & Zitelli, G. C. (1997). Cultivation of Spirulina (Arthrospira) platensis in flat plate reactors. In A. Vonshak (Ed.), Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology (pp. 117–130). Boca Raton, USA: Taylor and Francis.
  • Tsuji, N., Hirayanagi, N., Okada, M., Miyasaka, H., Hirata, K., Zenk, M. H., & Miyamoto, K. (2002). Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochemical and Biophysical Research Communications, 293, 653–659. doi:10.1016/S0006-291X(02)00265-6
  • Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2, 012701. doi:10.1063/1.3294480
  • Uriarte, I., Farías, A., Hawkins, A. J. S., & Bayne, B. L. (1993). Cell characteristics and biochemical composition of Dunaliella primolecta Butcher conditioned at different concentrations of dissolved nitrogen. Journal of Applied Phycology, 5, 447–453. doi:10.1007/BF02182737
  • Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B., & Muylaert, K. (2012). Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresource Technology, 105, 114–119. doi:10.1016/j.biortech.2011.11.105
  • Vandamme, D., Foubert, I., & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 31, 233–239. doi:10.1016/j.tibtech.2012.12.005
  • Vanitha, A., Narayan, M. S., Murthy, K. N. C., & Ravishankar, G. A. (2007). Comparative study of lipid composition of two halotolerant alga, Dunaliella bardawil and Dunaliella salina. International Journal of Food Sciences and Nutrition, 58, 373–382. doi:10.1080/09637480701252252
  • van Poppel, G. (1993). Carotenoids and cancer: An update with emphasis on human intervention studies. European Journal of Cancer, 29, 1335–1344. doi:10.1016/0959-8049(93)90087-V
  • Vigani, M., Parisi, C., Rodríguez-Cerezo, E., Barbosa, M. J., Sijtsma, L., Ploeg, M., & Enzing, C. (2015). Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends in Food Science & Technology, 42, 81–92. doi:10.1016/j.tifs.2014.12.004
  • Villar, R., Laguna, M., Calleja, J., & Cadavid, I. (1992). Effects of Phaeodactylum tricornutum and Dunaliella tertiolecta extracts on the central nervous system. Planta Medica, 58, 405–409. doi:10.1055/s-2006-961501
  • Volkman, J. K., Barrett, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L., & Gelin, F. (1998). Microalgal biomarkers: A review of recent research developments. Organic Geochemistry, 29, 1163–1179. doi:10.1016/S0146-6380(98)00062-X
  • Walne, P. R. (1970). Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea. Crassostrea, Mercenaria and Mytilus In Fishery Investigations, 26, 1–62, HMSO, London.
  • Wan, C., Alam, M. A., Zhao, X.-Q., Zhang, X.-Y., Guo, S.-L. … Bai, F.-W. (2015). Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresource Technology, 184, 251–257. doi:10.1016/j.biortech.2014.11.081
  • Wright, S., & Burton, H. (1981). The biology of Antarctic saline lakes. Hydrobiologia, 82, 319–338. doi:10.1007/BF00048723
  • Xu, L., Gao, F., Feng, J., Lv, J., Liu, Q. … Xie, S. (2022). Relationship between β-carotene accumulation and geranylgeranyl pyrophosphate synthase in different species of Dunaliella. Plants, 11, 27. doi:10.3390/plants11010027
  • Yamaoka, Y., Takimura, O., Fuse, H., & Murakami, K. (1999). Effect of glutathione on arsenic accumulation by Dunaliella salina. Applied Organometallic Chemistry, 13, 89–94.
  • Yamashita, Y., Takeuchi, T., Endo, Y., Goto, A., Sakaki, S. … Yamashita, H. (2020). Dietary supplementation with dunaliella tertiolecta prevents whitening of brown fat and controls diet-induced obesity at thermoneutrality in mice. Nutrients, 12, 1686. doi:10.3390/nu12061686
  • Yao, S., Lu, J., Sárossy, Z., Baggesen, C., Brandt, A., & An, Y. (2016). Neutral lipid production in Dunaliella salina during osmotic stress and adaptation. Journal of Applied Phycology, 28, 2167–2175. doi:10.1007/s10811-016-0794-7
  • Ye, Z.-W., Jiang, J.-G., & Wu, G.-H. (2008). Biosynthesis and regulation of carotenoids in Dunaliella: Progresses and prospects. Biotechnology Advances, 26, 352–360. doi:10.1016/j.biotechadv.2008.03.004
  • Yilancioglu, K., Cokol, M., Pastirmaci, I., Erman, B., Cetiner, S., & Campbell, D. A. (2014). Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE, 9, e91957. doi:10.1371/journal.pone.0091957
  • Yi, Y., Qiao, D., Bai, L., Xu, H., Li, Y., Wang, X., & Cao, Y. (2007). Cloning, expression, and functional characterization of the Dunaliella salina 5-enolpyruvylshikimate-3-phosphate synthase gene in Escherichia coli. Journal of Microbiology (Seoul, Korea), 45, 153–157.
  • Yi, Y., Yi, C., Qian, L., Min, L., Long, C. … Dairong, Q. (2006). Cloning and sequence analysis of the gene encoding (6-4)photolyase from Dunaliella salina. Biotechnology Letters, 28, 309–314. doi:10.1007/s10529-005-5716-8
  • Zhu, Y.-H., Jiang, J.-G., & Chen, Q. (2008). Characterization of cDNA of lycopene β-cyclase responsible for a high level of β-carotene accumulation in Dunaliella salina. Biochemistry and Cell Biology, 86, 285–292. doi:10.1139/O08-012