847
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Biological aspects of modern dental composites

ORCID Icon & ORCID Icon
Article: 2223223 | Received 07 Feb 2023, Accepted 05 Jun 2023, Published online: 19 Jun 2023

References

  • Bowen RL. Properties of a silica-reinforced polymer for dental restorations. J Am Dent Assoc. 1963;66:57–64. doi: 10.14219/jada.archive.1963.0010.
  • Bayne SC. Beginnings of the dental composite revolution. J Am Dent Assoc. 2013;144(8):880–884. doi: 10.14219/jada.archive.2013.0205.
  • Van Landuyt KL, Snauwaert J, De Munck J, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28(26):3757–3785. doi: 10.1016/j.biomaterials.2007.04.044.
  • Kanerva L, Estlander T, Jolanki R. Allergic contact dermatitis from dental composite resins due to aromatic epoxy acrylates and aliphatic acrylates. Contact Dermatitis. 1989;20(3):201–211. doi: 10.1111/j.1600-0536.1989.tb04657.x.
  • Aalto-Korte K, Alanko K, Kuuliala O, et al. Methacrylate and acrylate allergy in dental personnel. Contact Dermatitis. 2007;57(5):324–330. doi: 10.1111/j.1600-0536.2007.01237.x.
  • Raposo I, Lobo I, Amaro C, et al. Allergic contact dermatitis caused by (meth)acrylates in nail cosmetic products in users and nail technicians - a 5-year study. Contact Dermatitis. 2017;77(6):356–359. doi: 10.1111/cod.12817.
  • Jordan WP. Jr., Cross-sensitization patterns in acrylate allergies. Contact Dermatitis. 1975;1(1):13–15. doi: 10.1111/j.1600-0536.1975.tb05304.x.
  • Kanerva L. Cross-reactions of multifunctional methacrylates and acrylates. Acta Odontol Scand. 2001;59(5):320–329. doi: 10.1080/000163501750541200.
  • Goncalves TS, Morganti MA, Campos LC, et al. Allergy to auto-polymerized acrylic resin in an orthodontic patient. Am J Orthod Dentofacial Orthop. 2006;129(3):431–435. doi: 10.1016/j.ajodo.2005.10.017.
  • Singh RD, Gautam R, Siddhartha R, et al. High performance liquid chromatographic determination of residual monomer released from heat-cured acrylic resin. An in vivo study. J Prosthodont. 2013;22(5):358–361. doi: 10.1111/jopr.12004.
  • Baker S, Brooks SC, Walker DM. The release of residual monomeric methyl methacrylate from acrylic appliances in the human mouth: an assay for monomer in saliva. J Dent Res. 1988;67(10):1295–1299. doi: 10.1177/00220345880670101001.
  • Michelsen VB, Kopperud HB, Lygre GB, et al. Detection and quantification of monomers in unstimulated whole saliva after treatment with resin-based composite fillings in vivo. Eur J Oral Sci. 2012;120(1):89–95. doi: 10.1111/j.1600-0722.2011.00897.x.
  • Kopperud HM, Kleven IS, Wellendorf H. Identification and quantification of leachable substances from polymer-based orthodontic base-plate materials. Eur J Orthod. 2011;33(1):26–31. doi: 10.1093/ejo/cjq020.
  • Tuna EB, Aktoren O, Oshida Y, et al. Elution of residual monomers from dental composite materials. Eur J Paediatr Dent. 2010;11(3):110–114.
  • Putzeys E, Nys S, Cokic SM, et al. Long-term elution of monomers from resin-based dental composites. Dent Mater. 2019;35(3):477–485. doi: 10.1016/j.dental.2019.01.005.
  • ISO, ISO 10993-5 Biological evaluation of medical devices, part 5: tests for in vitro cytotoxicity., International Standard Organization, Geneva, Switzerland, 2009.
  • Juranova J. Illuminating the cellular and molecular mechanism of the potential toxicity of methacrylate monomers used in biomaterials. Drug Chem Toxicol. 2020;43(3):266–278.
  • Morisbak E, Uvslokk S, Samuelsen JT. In vitro effects of dental monomer exposure - Dependence on the cell culture model. Toxicol In Vitro. 2020;67:104906. doi: 10.1016/j.tiv.2020.104906.
  • Samuelsen JT, Holme JA, Becher R, et al. HEMA reduces cell proliferation and induces apoptosis in vitro. Dent Mater. 2008;24(1):134–140. doi: 10.1016/j.dental.2007.08.006.
  • Morisbak E, Ansteinsson V, Samuelsen JT. Cell toxicity of 2-hydroxyethyl methacrylate (HEMA): the role of oxidative stress. Eur J Oral Sci. 2015;123(4):282–287. doi: 10.1111/eos.12189.
  • Samuelsen JT, Dahl JE, Karlsson S, et al. Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK. Dent Mater. 2007;23(1):34–39. doi: 10.1016/j.dental.2005.11.037.
  • Spagnuolo G, D'Anto V, Valletta R, et al. Effect of 2-hydroxyethyl methacrylate on human pulp cell survival pathways ERK and AKT. J Endod. 2008;34(6):684–688. doi: 10.1016/j.joen.2008.02.040.
  • Krifka S, Spagnuolo G, Schmalz G, et al. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials. 2013;34(19):4555–4563. doi: 10.1016/j.biomaterials.2013.03.019.
  • Klaassen CD. Casarett & Doull’s toxicology: the basic science of poisons., 7th ed., McGraw-Hill Medical, New York, 2008.
  • Demasi M, Netto LE, Silva GM, et al. Redox regulation of the proteasome via S-glutathionylation. Redox Biol. 2014;2:44–51. doi: 10.1016/j.redox.2013.12.003.
  • Engelmann J, Leyhausen G, Leibfritz D, et al. Effect of TEGDMA on the intracellular glutathione concentration of human gingival fibroblasts. J Biomed Mater Res. 2002;63(6):746–751. doi: 10.1002/jbm.10465.
  • Samuelsen JT, Kopperud HM, Holme JA, et al. Role of thiol-complex formation in 2-hydroxyethyl- methacrylate-induced toxicity in vitro. J Biomed Mater Res A. 2011;96(2):395–401. doi: 10.1002/jbm.a.32993.
  • Ansteinsson V, Kopperud HB, Morisbak E, et al. Cell toxicity of methacrylate monomers-the role of glutathione adduct formation. J Biomed Mater Res A. 2013;101(12):3504–3510. doi: 10.1002/jbm.a.34652.
  • Spagnuolo G, D'Anto V, Cosentino C, et al. Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials. 2006;27(9):1803–1809. doi: 10.1016/j.biomaterials.2005.10.022.
  • Paranjpe A, Cacalano NA, Hume WR, et al. N-acetyl cysteine mediates protection from 2-hydroxyethyl methacrylate induced apoptosis via nuclear factor kappa B-dependent and independent pathways: potential involvement of JNK. Toxicol Sci. 2009;108(2):356–366. doi: 10.1093/toxsci/kfp010.
  • Becher R, Valen H, Olderbo BP, et al. The dental monomer 2-hydroxyethyl methacrylate (HEMA) causes transcriptionally regulated adaptation partially initiated by electrophilic stress. Dent Mater. 2019;35(1):125–134. doi: 10.1016/j.dental.2018.11.008.
  • Alizadehgharib S, Ostberg AK, Dahlgren U. Effects of the methacrylate/acrylate monomers HEMA, TEGDMA, DEGDA, and EMA on the immune system. Clin Exp Dent Res. 2017;3(6):227–234. doi: 10.1002/cre2.93.
  • Bolling AK, Samuelsen JT, Morisbak E, et al. Dental monomers inhibit LPS-induced cytokine release from the macrophage cell line RAW264.7. Toxicol Lett. 2013;216(2-3):130–138. doi: 10.1016/j.toxlet.2012.11.010.
  • Krifka S, Petzel C, Hiller KA, et al. Resin monomer-induced differential activation of MAP kinases and apoptosis in mouse macrophages and human pulp cells. Biomaterials. 2010;31(11):2964–2975. doi: 10.1016/j.biomaterials.2010.01.005.
  • Schweikl H, Altmannberger I, Hanser N, et al. The effect of triethylene glycol dimethacrylate on the cell cycle of mammalian cells. Biomaterials. 2005;26(19):4111–4118. doi: 10.1016/j.biomaterials.2004.10.026.
  • Eckhardt A, Muller P, Hiller KA, et al. Influence of TEGDMA on the mammalian cell cycle in comparison with chemotherapeutic agents. Dent Mater. 2010;26(3):232–241. doi: 10.1016/j.dental.2009.10.005.
  • Urcan E, Scherthan H, Styllou M, et al. Induction of DNA double-strand breaks in primary gingival fibroblasts by exposure to dental resin composites. Biomaterials. 2010;31(8):2010–2014. doi: 10.1016/j.biomaterials.2009.11.065.
  • Schweikl H, Schmalz G, Rackebrandt K. The mutagenic activity of unpolymerized resin monomers in Salmonella typhimurium and V79 cells. Mutat Res. 1998;415(1–2):119–130. doi: 10.1016/s1383-5718(98)00067-9.
  • Schweikl H, Schmalz G, Spruss T. The induction of micronuclei in vitro by unpolymerized resin monomers. J Dent Res. 2001;80(7):1615–1620. doi: 10.1177/00220345010800070401.
  • Ansteinsson V, Solhaug A, Samuelsen JT, et al. DNA-damage, cell-cycle arrest and apoptosis induced in BEAS-2B cells by 2-hydroxyethyl methacrylate (HEMA). Mutat Res. 2011;723(2):158–164. doi: 10.1016/j.mrgentox.2011.04.011.
  • Krifka S, Petzel C, Bolay C, et al. Activation of stress-regulated transcription factors by triethylene glycol dimethacrylate monomer. Biomaterials. 2011;32(7):1787–1795. doi: 10.1016/j.biomaterials.2010.11.031.
  • Eckhardt A, Gerstmayr N, Hiller KA, et al. TEGDMA-induced oxidative DNA damage and activation of ATM and MAP kinases. Biomaterials. 2009;30(11):2006–2014. doi: 10.1016/j.biomaterials.2008.12.045.
  • Ishikawa A, Jinno S, Suzuki T, et al. Global gene expression analyses of mouse fibroblast L929 cells exposed to IC50 MMA by DNA microarray and confirmation of four detoxification genes’ expression by real-time PCR. Dent Mater J. 2006;25(2):205–213. doi: 10.4012/dmj.25.205.
  • Schweikl H, Hiller KA, Eckhardt A, et al. Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. Biomaterials. 2008;29(10):1377–1387. doi: 10.1016/j.biomaterials.2007.11.049.
  • Cho SG, Lee JW, Heo JS, et al. Gene expression change in human dental pulp cells exposed to a low-level toxic concentration of triethylene glycol dimethacrylate: an RNA-seq analysis. Basic Clin Pharmacol Toxicol. 2014;115(3):282–290. doi: 10.1111/bcpt.12197.
  • Nilsen BW, Simon-Santamaria J, Ortengren U, et al. Dose- and time-dependent effects of triethylene glycol dimethacrylate on the proteome of human THP-1 monocytes. Eur J Oral Sci. 2018;126(5):345–358. doi: 10.1111/eos.12559.
  • Samuelsen JT, Michelsen VB, Bruun JA, et al. The dental monomer HEMA causes proteome changes in human THP-1 monocytes. J Biomed Mater Res A. 2019;107(4):851–859. doi: 10.1002/jbm.a.36601.
  • Tilija Pun N, Park PH. Role of p62 in the suppression of inflammatory cytokine production by adiponectin in macrophages: involvement of autophagy and p21/Nrf2 axis. Sci Rep. 2017;7(1):393. doi: 10.1038/s41598-017-00456-6.
  • Liu F, Rehmani I, Esaki S, et al. Pirin is an iron-dependent redox regulator of NF-kappaB. Proc Natl Acad Sci U S A. 2013;110(24):9722–9727. doi: 10.1073/pnas.1221743110.
  • Chaung W, Mi LJ, Boorstein RJ. The p53 status of Chinese hamster V79 cells frequently used for studies on DNA damage and DNA repair. Nucleic Acids Res. 1997;25(5):992–994. doi: 10.1093/nar/25.5.992.
  • Sugimoto K, Toyoshima H, Sakai R, et al. Frequent mutations in the p53 gene in human myeloid leukemia cell lines. Blood. 1992;79(9):2378–2383. doi: 10.1182/blood.V79.9.2378.bloodjournal7992378.
  • Singh A, Misra V, Thimmulappa RK, et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 2006;3(10):e420. doi: 10.1371/journal.pmed.0030420.
  • ISO, ISO 10993-1 Biological evaluation of medical devices -, part 1: evaluation and testing within a risk management process. Geneva, Switzerland: International Standard Organization, 2018.
  • Chen AY, Zirwas MJ. Denture stomatitis. Skinmed. 2007;6(2):92–94. doi: 10.1111/j.1540-9740.2007.05867.x.
  • ISO, ISO 10993-10 Biological evaluation of medical devices -, part 10: tests for skin sensitization. Geneva, Switzerland: International Standard Organization, 2021.
  • ISO, ISO 10993-23 Biological evaluation of medical devices -, part 23: tests for irritation. Geneva, Switzerland: International Standard Organization, Geneva, Switzerland, 2021.
  • Frankild S, Volund A, Wahlberg JE, et al. Comparison of the sensitivities of the buehler test and the Guinea pig maximization test for predictive testing of contact allergy. Acta Derm Venereol. 2000;80(4):256–262.
  • OECD, Test No. 429: skin Sensitisation, 2010.
  • Ankley GT, Bennett RS, Erickson RJ, et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29(3):730–741. doi: 10.1002/etc.34.
  • Urbisch D, Honarvar N, Kolle SN, et al. Peptide reactivity associated with skin sensitization: the QSAR toolbox and TIMES compared to the DPRA. Toxicol In Vitro. 2016;34:194–203. doi: 10.1016/j.tiv.2016.04.005.
  • Kim H, Choi J, Lee H, et al. Skin corrosion and irritation test of nanoparticles using reconstructed three-dimensional human skin model, EpiDerm(TM. Toxicol Res. 2016;32(4):311–316. doi: 10.5487/TR.2016.32.4.311.
  • Spielmann H, Kalweit S, Liebsch M, et al. Validation study of alternatives to the draize eye irritation test in Germany: cytotoxicity testing and HET-CAM test with 136 industrial chemicals. Toxicol In Vitro. 1993;7(4):505–510. doi: 10.1016/0887-2333(93)90055-a.
  • Rivero MN, Lenze M, Izaguirre M, et al. Comparison between HET-CAM protocols and a product use clinical study for eye irritation evaluation of personal care products including cosmetics according to their surfactant composition. Food Chem Toxicol. 2021;153:112229. doi: 10.1016/j.fct.2021.112229.
  • Dahl JE. Irritation of dental adhesive agents evaluated by the HET-CAM test. Toxicol In Vitro. 1999;13(2):259–264. doi: 10.1016/s0887-2333(98)00086-1.
  • Lonnroth EC, Dahl JE, Shahnavaz H. Evaluating the potential occupational hazard of handling dental polymer products using the HET-CAM technique. Int J Occup Saf Ergon. 1999;5(1):43–57. doi: 10.1080/10803548.1999.11076410.
  • Dahl JE. Potential of dental adhesives to induce mucosal irritation evaluated by the HET-CAM method. Acta Odontol Scand. 2007;65(5):275–283. doi: 10.1080/00016350701589286.
  • Natsch A, Emter R. Skin sensitizers induce antioxidant response element dependent genes: application to the in vitro testing of the sensitization potential of chemicals. Toxicol Sci. 2008;102(1):110–119. doi: 10.1093/toxsci/kfm259.
  • Gerberick GF, Vassallo JD, Bailey RE, et al. Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci. 2004;81(2):332–343. doi: 10.1093/toxsci/kfh213.
  • Natsch A. The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers–functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol Sci. 2010;113(2):284–292. doi: 10.1093/toxsci/kfp228.
  • OECD, Test No. 442C: in Chemico Skin Sensitisation, 2015.
  • OECD, Test No. 442D: in Vitro Skin Sensitisation, 2015.
  • Russell WMS, Burch RL. The principles of humane experimental technique. Special edition ed. South Mimms: Universities Federation for Animal Welfare, 1992.
  • Natsch A, Emter R, Ellis G. Filling the concept with data: integrating data from different in vitro and in silico assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing. Toxicol Sci. 2009;107(1):106–121. doi: 10.1093/toxsci/kfn204.
  • van der Veen JW, Rorije E, Emter R, et al. Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regul Toxicol Pharmacol. 2014;69(3):371–379. doi: 10.1016/j.yrtph.2014.04.018.
  • Henriks-Eckerman ML, Suuronen K, Jolanki R, et al. Methacrylates in dental restorative materials. Contact Dermatitis. 2004;50(4):233–237. doi: 10.1111/j.0105-1873.2004.00336.x.