804
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes

, , , &
Article: 2234400 | Received 14 Feb 2023, Accepted 04 Jul 2023, Published online: 13 Jul 2023

References

  • Reichl F-X, Löhle J, Seiss M, et al. Elution of TEGDMA and HEMA from polymerized resin-based bonding systems. Dent Mater. 2012; 28(11):1120–1125. doi: 10.1016/j.dental.2012.06.010.
  • Van Landuyt KL, Nawrot T, Geebelen B, et al. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater. 2011; 27(8):723–747. doi: 10.1016/j.dental.2011.05.001.
  • Samuelsen JT, Dahl JE, Karlsson S, et al. Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK. Dent Mater. 2007;23(1):34–39. doi: 10.1016/j.dental.2005.11.037.
  • Teti G, Orsini G, Salvatore V, et al. HEMA but not TEGDMA induces autophagy in human gingival fibroblasts. Front Physiol. 2015;6:1–8. doi: 10.3389/fphys.2015.00275.
  • Samuelsen JT, Holme JA, Becher R, et al. HEMA reduces cell proliferation and induces apoptosis in vitro. Dent Mater. 2008;24(1):134–140. doi: 10.1016/j.dental.2007.08.006.
  • Perduns R, Volk J, Schertl P, et al. HEMA modulates the transcription of genes related to oxidative defense, inflammatory response and organization of the ECM in human oral cells. Dent Mater. 2019;35(3):501–510. doi: 10.1016/j.dental.2019.01.011.
  • Samuelsen JT, Kopperud HM, Holme JA, et al. Role of thiol-complex formation in 2-hydroxyethyl- methacrylate-induced toxicity in vitro. J Biomed Mater Res A. 2011;96(2):395–401. doi: 10.1002/jbm.a.32993.
  • Krifka S, Petzel C, Hiller K-A, et al. Resin monomer-induced differential activation of MAP kinases and apoptosis in mouse macrophages and human pulp cells. Biomaterials. 2010;31(11):2964–2975. doi: 10.1016/j.biomaterials.2010.01.005.
  • Morisbak E, Ansteinsson V, Samuelsen JT. Cell toxicity of 2-hydroxyethyl methacrylate (HEMA): the role of oxidative stress. Eur J Oral Sci. 2015;123(4):282–287. doi: 10.1111/eos.12189.
  • Orimoto A, Suzuki T, Ueno A, et al. Effect of 2-hydroxyethyl methacrylate on antioxidant responsive element-mediated transcription: a possible indication of its cytotoxicity. PLoS One. 2013;8(3):e58907. doi: 10.1371/journal.pone.0058907.
  • Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–322. doi: 10.1006/bbrc.1997.6943.
  • Gallorini M, Petzel C, Bolay C, et al. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability. Biomaterials. 2015;56:114–128. doi: 10.1016/j.biomaterials.2015.03.047.
  • Becher R, Valen H, Olderbø BP, et al. The dental monomer 2-hydroxyethyl methacrylate (HEMA) causes transcriptionally regulated adaptation partially initiated by electrophilic stress. Dent Mater. 2019;35(1):125–134. doi: 10.1016/j.dental.2018.11.008.
  • Wallenhammar L-M, Örtengren U, Andreasson H, et al. Contact allergy and hand eczema in Swedish dentists. Contact Dermatitis. 2000;43(4):192–199. doi: 10.1034/j.1600-0536.2000.043004192.x.
  • Hagberg S, Ljungkvist G, Andreasson H, et al. Exposure to volatile methacrylates in dental personnel. J Occup Environ Hyg. 2005;2(6):302–306. doi: 10.1080/15459620590958732.
  • Vintermyr OK, Costea DE, Loro LL, et al. Crucial effects of fibroblasts and keratinocyte growth factor on morphogenesis of reconstituted human oral epithelium. J Invest Dermatol. 2003;121(6):1479–1486. doi: 10.1111/j.1523-1747.2003.12616.x.
  • Cukierman E, Pankov R, Stevens DR, et al. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–1712. doi: 10.1126/science.1064829.
  • Hillmann G, Gebert A, Geurtsen W. Matrix expression and proliferation of primary gingival fibroblasts in a three-dimensional cell culture model. J Cell Sci. 1999;112(17):2823–2832. doi: 10.1242/jcs.112.17.2823.
  • Klausner M, Handa Y, Aizawa S. In vitro three-dimensional organotypic culture models of the oral mucosa. In Vitro Cell Dev Biol Anim. 2021;57(2):148–159. doi: 10.1007/s11626-020-00539-1.
  • Perduns R, Volk J, Plum M, et al. Effects of HEMA on Nrf2-related gene expression using a newly developed 3D co-culture model of the oral mucosa. Dent Mater. 2019;35(9):1214–1226. doi: 10.1016/j.dental.2019.05.006.
  • Costea DE, Kulasekara K, Neppelberg E, et al. Species-specific fibroblasts required for triggering invasiveness of partially transformed oral keratinocytes. Am J Pathol. 2006;168(6):1889–1897. doi: 10.2353/ajpath.2006.050843.
  • Sapkota D, Bruland O, Parajuli H, et al. S100A16 promotes differentiation and contributes to a less aggressive tumor phenotype in oral squamous cell carcinoma. BMC Cancer. 2015;15(1):631. doi: 10.1186/s12885-015-1622-1.
  • Costea DE, Dimba AOE, Loro LL, et al. The phenotype of in vitro reconstituted normal human oral epithelium is essentially determined by culture medium. J Oral Pathol Med. 2005;34(4):247–252. doi: 10.1111/j.1600-0714.2005.00308.x.
  • Schreurs O, Karatsaidis A, Balta MG, et al. Expression of keratins 8, 18, and 19 in epithelia of atrophic oral lichen planus. Eur J Oral Sci. 2020;128(1):7–17. doi: 10.1111/eos.12666.
  • Harper LJ, Piper K, Common J, et al. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med. 2007;36(10):594–603. doi: 10.1111/j.1600-0714.2007.00617.x
  •  Rheinwald JG, Beckett MA. Tumorigenic keratino-cyte lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas. Cancer Res. 1981;41(5):1657–1663.
  • Kusmardi K, Elvan W, Ari E, et al. Potential of Phaleria macrocarpa leaves ethanol extract to upregulate the expression of caspase-3 in mouse distal Colon after dextran sodium sulphate induction. PJ. 2021;13(1):23–29. doi: 10.5530/pj.2021.13.4.
  • Diomede F, Tripodi D, Trubiani O, et al. HEMA effects on autophagy mechanism in human dental pulp stem cells. Materials. 2019;12(14):2285. doi: 10.3390/ma12142285.
  • Reichl FX, Walther UI, Durner J, et al. Cytotoxicity of dental composite components and mercury compounds in lung cells. Dent Mater. 2001;17(2):95–101. doi: 10.1016/s0109-5641(00)00029-4.
  • Ansteinsson V, Solhaug A, Samuelsen JT, et al. DNA-damage, cell-cycle arrest and apoptosis induced in BEAS-2B cells by 2-hydroxyethyl methacrylate (HEMA). Mutat Res. 2011;723(2):158–164. doi: 10.1016/j.mrgentox.2011.04.011.
  • Pawlowska E, Poplawski T, Ksiazek D, et al. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate. Mutat Res. 2010;696(2):122–129. doi: 10.1016/j.mrgentox.2009.12.019.
  • Schweikl H, Hartmann A, Hiller KA, et al. Inhibition of TEGDMA and HEMA-induced genotoxicity and cell cycle arrest by N-acetylcysteine. Dent Mater. 2007;23(6):688–695. doi: 10.1016/j.dental.2006.06.021.
  • Yoshii SR, Mizushima N. Monitoring and measuring autophagy. IJMS. 2017;18(9):1865. doi: 10.3390/ijms18091865.
  • Ly KL, Rooholghodos SA, Rahimi C, et al. An oral-mucosa-on-a-chip sensitively evaluates cell responses to dental monomers. Biomed Microdevices. 2021;23(1):7. doi: 10.1007/s10544-021-00543-6.
  • Rahimi C, Rahimi B, Padova D, et al. Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. Biomicrofluidics. 2018;12(5):054106. doi: 10.1063/1.5048938.
  • Gard AL, Luu RJ, Maloney R, et al. A high-throughput, 28-day, microfluidic model of gingival tissue inflammation and recovery. Commun Biol. 2023;6(1):92. doi: 10.1038/s42003-023-04434-9.
  • Danku AE, Dulf E-H, Braicu C, et al. Organ-on-a-chip: a survey of technical results and problems [review]. Front Bioeng Biotechnol. 2022;10:840674. doi: 10.3389/fbioe.2022.840674.