486
Views
0
CrossRef citations to date
0
Altmetric
Original Article

An in vitro assessment of biaxial flexural strength, degree of monomer conversion, color stability, and ion release in provisional restorations containing Sr-bioactive glass nanoparticles

, , , ORCID Icon & ORCID Icon
Article: 2265393 | Received 27 Jun 2023, Accepted 26 Sep 2023, Published online: 14 Oct 2023

References

  • Sadek HMA, El-Banna A. Biaxial flexural strength of different provisional restorative materials under chemo-mechanical aging: an in vitro study. J Prosthodont. 2023;1-8. doi: 10.1111/jopr.13662.
  • Pituru SM, Greabu M, Totan A, et al. A review on the biocompatibility of PMMA-Based dental materials for interim prosthetic restorations with a glimpse into their modern manufacturing techniques. Materials (Basel). 2020;13(13):2894. doi: 10.3390/ma13132894.
  • Altintas SH, Yondem I, Tak O, et al. Temperature rise during polymerization of three different provisional materials. Clin Oral Investig. 2008;12(3):283–286. doi: 10.1007/s00784-007-0163-7.
  • Gautam R, Singh RD, Sharma VP, et al. Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res B Appl Biomater. 2012;100(5):1444–1450. doi: 10.1002/jbm.b.32673.
  • Jun SK, Cha JR, Knowles JC, et al. Development of Bis-GMA-free biopolymer to avoid estrogenicity. Dent Mater. 2020;36(1):157–166. doi: 10.1016/j.dental.2019.11.016.
  • Floyd CJ, Dickens SH. Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater. 2006;22(12):1143–1149. doi: 10.1016/j.dental.2005.10.009.
  • Macedo M, Volpato CAM, Henriques B, et al. Color stability of a bis-acryl composite resin subjected to polishing, thermocycling, intercalated baths, and immersion in different beverages. J Esthet Restor Dent. 2018;30(5):449–456. Epub 20180908 doi: 10.1111/jerd.12404.
  • Ozel GS, Guneser MB, Inan O, et al. Evaluation of C. Albicans and S. Mutans adherence on different provisional crown materials. J Adv Prosthodont. 2017;9(5):335–340. Epub 20171016 doi: 10.4047/jap.2017.9.5.335.
  • Dai LL, Mei ML, Chu CH, et al. Mechanisms of bioactive glass on caries management: a review. Materials (Basel). 2019;12(24):4183. Epub 20191212. doi: 10.3390/ma12244183.
  • Fernando D, Attik N, Pradelle-Plasse N, et al. Bioactive glass for dentin remineralization: a systematic review. Mater Sci Eng C Mater Biol Appl. 2017;76:1369–1377. Epub 20170314 doi: 10.1016/j.msec.2017.03.083.
  • Chaichana W, Insee K, Chanachai S, et al. Physical/mechanical and antibacterial properties of orthodontic adhesives containing Sr-bioactive glass nanoparticles, calcium phosphate, and andrographolide. Sci Rep. 2022;12(1):6635. doi: 10.1038/s41598-022-10654-6.
  • Dai LL, Mei ML, Chu CH, et al. Remineralizing effect of a new strontium-doped bioactive glass and fluoride on demineralized enamel and dentine. J Dent. 2021;108:103633. Epub 20210311. doi: 10.1016/j.jdent.2021.103633.
  • Sasaki JI, Kiba W, Abe GL, et al. Fabrication of strontium-releasable inorganic cement by incorporation of bioactive glass. Dent Mater. 2019;35(5):780–788. Epub 20190301 doi: 10.1016/j.dental.2019.02.019.
  • Baheiraei N, Eyni H, Bakhshi B, et al. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci Rep. 2021;11(1):8745. doi: 10.1038/s41598-021-88058-1.
  • Jang JH, Lee MG, Ferracane JL, et al. Effect of bioactive glass-containing resin composite on dentin remineralization. J Dent. 2018;75:58–64. Epub 20180525 doi: 10.1016/j.jdent.2018.05.017.
  • Potiprapanpong W, Naruphontjirakul P, Khamsuk C, et al. Assessment of mechanical/chemical properties and cytotoxicity of resin-modified glass ionomer cements containing Sr/F-bioactive glass nanoparticles and methacrylate functionalized polyacids. Int J Mol Sci. 2023;24(12):10231. doi: 10.3390/ijms241210231.
  • Khvostenko D, Hilton TJ, Ferracane JL, et al. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater. 2016;32(1):73–81. doi: 10.1016/j.dental.2015.10.007.
  • Salehi S, Gwinner F, Mitchell JC, et al. Cytotoxicity of resin composites containing bioactive glass fillers. Dent Mater. 2015;31(2):195–203. doi: 10.1016/j.dental.2014.12.004.
  • Korkut E, Torlak E, Altunsoy M. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass. J Appl Biomater Funct Mater. 2016;14(3):e296-301–e301. Epub 20160726 doi: 10.5301/jabfm.5000271.
  • Mirchandani B, Padunglappisit C, Toneluck A, et al. Effects of Sr/F-Bioactive glass nanoparticles and calcium phosphate on monomer conversion, biaxial flexural strength, surface microhardness, mass/volume changes, and color stability of Dual-Cured dental composites for core Build-Up materials. Nanomaterials (Basel). 2022;12(11):1897. doi: 10.3390/nano12111897.
  • Delgado AHS, Young AM. Methacrylate peak determination and selection recommendations using ATR-FTIR to investigate polymerisation of dental methacrylate mixtures. PLoS One. 2021;16(6):e0252999. doi: 10.1371/journal.pone.0252999.
  • Panpisut P, Khan MA, Main K, et al. Polymerization kinetics stability, volumetric changes, apatite precipitation, strontium release and fatigue of novel bone composites for vertebroplasty. PLoS One. 2019;14(3):e0207965. doi: 10.1371/journal.pone.0207965.
  • Akinmade AO, Nicholson JW. Poisson’s ratio of glass-polyalkenoate (glass-ionomer) cements determined by an ultrasonic pulse method. J Mater Sci: mater Med. 1995;6(8):483–485. doi: 10.1007/BF00123374.
  • Chung SM, Yap AU, Koh WK, et al. Measurement of Poisson’s ratio of dental composite restorative materials. Biomaterials. 2004;25(13):2455–2460. doi: 10.1016/j.biomaterials.2003.09.029.
  • Higgs WA, Lucksanasombool P, Higgs RJ, et al. A simple method of determining the modulus of orthopedic bone cement. J Biomed Mater Res. 2001;58(2):188–195. doi: https://doi.org/10.1002/1097-4636(2001)58:2<188::AID-JBM1006>3.0.CO;2-v.
  • Ardu S, Duc O, Di Bella E, et al. Color stability of recent composite resins. Odontology. 2017;105(1):29–35. Epub 20160218 doi: 10.1007/s10266-016-0234-9.
  • Panpisut P, Praesuwatsilp N, Bawornworatham P, et al. Assessment of physical/mechanical performance of dental resin sealants containing Sr-Bioactive glass nanoparticles and calcium phosphate. Polymers (Basel). 2022;14(24):5436. doi: 10.3390/polym14245436.
  • Padunglappisit C, Posaya-Anuwat S, Sompoch V, et al. Effects of different amine activators on the monomer conversion, biaxial flexural strength, and color stability of experimental provisional dental restorations. Eur J Dent. 2021;15(3):488–494. doi: 10.1055/s-0040-1721908.
  • Fang J, Shen J, Jiang W, et al. Cytotoxicity of polymethyl methacrylate cement on primary cultured metastatic spinal cells. Mol Cell Toxicol. 2016;12(2):125–132. doi: 10.1007/s13273-016-0016-z.
  • Durner J, Obermaier J, Draenert M, et al. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater. 2012;28(11):1146–1153. Epub 20120831 doi: 10.1016/j.dental.2012.08.006.
  • Mehrpour H, Farjood E, Giti R, et al. Evaluation of the flexural strength of interim restorative materials in fixed prosthodontics. J Dent (Shiraz). 2016;17(3):201–206.
  • Yao J, Li J, Wang Y, et al. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent. 2014;112(3):649–657. Epub 20140412 doi: 10.1016/j.prosdent.2014.01.012.
  • Wuersching SN, Hickel R, Edelhoff D, et al. Initial biocompatibility of novel resins for 3D printed fixed dental prostheses. Dent Mater. 2022;38(10):1587–1597. Epub 20220822 doi: 10.1016/j.dental.2022.08.001.
  • Wang R, Habib E, Zhu XX. Evaluation of the filler packing structures in dental resin composites: from theory to practice. Dent Mater. 2018;34(7):1014–1023. Epub 20180416 doi: 10.1016/j.dental.2018.03.022.
  • Santing HJ, Kleverlaan CJ, Werner A, et al. Occlusal wear of provisional implant-supported restorations. Clin Implant Dent Relat Res. 2015;17(1):179–185. Epub 20130417 doi: 10.1111/cid.12072.
  • Glaskova T, Zarrelli M, Borisova A, et al. Method of quantitative analysis of filler dispersion in composite systems with spherical inclusions. Compos Sci Technol. 2011;71(13):1543–1549. doi: 10.1016/j.compscitech.2011.06.009.
  • Aminoroaya A, Neisiany RE, Khorasani SN, et al. A review of dental composites: challenges, chemistry aspects, filler influences, and future insights. Compos. B: Eng. 2021;216:108852. doi: 10.1016/j.compositesb.2021.108852.
  • British Standard. Dentistry polymer-based crown and veneering materials (ISO 10477:2018). Switzerland: BSI Standards; 2018.
  • Paravina RD, Ghinea R, Herrera LJ, et al. Color difference thresholds in dentistry. J Esthet Restor Dent. 2015;27 Suppl 1(S1): s 1–9. Epub 20150417 doi: 10.1111/jerd.12149.
  • Fonseca AS, Labruna Moreira AD, de Albuquerque PP, et al. Effect of monomer type on the CC degree of conversion, water sorption and solubility, and color stability of model dental composites. Dent Mater. 2017;33(4):394–401. Epub 20170227 doi: 10.1016/j.dental.2017.01.010.
  • Gantz L, Fauxpoint G, Arntz Y, et al. In vitro comparison of the surface roughness of polymethyl methacrylate and bis-acrylic resins for interim restorations before and after polishing. J Prosthet Dent. 2021;125(5):833 e1–e10. Epub 20210306 doi: 10.1016/j.prosdent.2021.02.009.
  • Elfakhri F, Alkahtani R, Li C, et al. Influence of filler characteristics on the performance of dental composites: a comprehensive review. Ceram Int. 2022;48(19):27280–27294. doi: 10.1016/j.ceramint.2022.06.314.
  • Tuncdemir MT, Gulbahce N. Addition of antibacterial agent effect on color stability of composites after immersion of different beverages. J Esthet Restor Dent. 2019;31(5):508–513. Epub 20190718 doi: 10.1111/jerd.12513.
  • Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, et al. Functional role of inorganic trace elements in dentin apatite tissue-Part 1: Mg, Sr, Zn, and Fe. J Trace Elem Med Biol. 2022;71:126932. Epub 20220115. doi: 10.1016/j.jtemb.2022.126932.
  • Jun SK, Lee JH, Lee HH. The biomineralization of a bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells. Biomed Res Int. 2017;2017:2495282–2495289. doi: 10.1155/2017/2495282.
  • Bhatia K, Nayak R, Ginjupalli K. Comparative evaluation of a bioactive restorative material with resin modified glass ionomer for calcium-ion release and shear bond strength to dentin of primary teeth-an in vitro study. J Clin Pediatr Dent. 2022;46(6):25–32. Epub 20221101 doi: 10.22514/jocpd.2022.022.
  • Chanachai S, Chaichana W, Insee K, et al. Physical/mechanical and antibacterial properties of orthodontic adhesives containing calcium phosphate and nisin. J Funct Biomater. 2021;12(4):73. doi: 10.3390/jfb12040073.
  • Jeong J, Kim JH, Shim JH, et al. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23(1):4. doi: 10.1186/s40824-018-0149-3.
  • Nasri K, El Feki H, Sharrock P, et al. Spray-Dried monocalcium phosphate monohydrate for soluble phosphate fertilizer. Ind Eng Chem Res. 2015;54(33):8043–8047. doi: 10.1021/acs.iecr.5b02100.
  • Par M, Spanovic N, Bjelovucic R, et al. Long-term water sorption and solubility of experimental bioactive composites based on amorphous calcium phosphate and bioactive glass. Dent Mater J. 2019;38(4):555–564. Epub 20190201 doi: 10.4012/dmj.2018-145.