263
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Enhanced anti-bacterial adhesion effect of FDMA/SR833s based dental resin composites by using 1H,1H-heptafluorobutyl methacrylate as partial diluent

, &
Article: 2281090 | Received 11 Oct 2023, Accepted 04 Nov 2023, Published online: 18 Nov 2023

References

  • Auschill TM, Arweiler NB, Brecx M, et al. The effect of dental restorative materials on dental biofilm. Eur J Oral Sci. 2002;110(1):1–9. doi: 10.1046/j.0909-8836.2001.101160.x.
  • Beyth N, Domb AJ, Weiss E. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent. 2007;35(3):201–206. doi: 10.1016/j.jdent.2006.07.009.
  • He J, Lassila L, Garoushi S, Vallittu P. Tailoring the monomers to overcome the shortcomings of current dental resin composites-review. Biomater Investig Dent 2023;10(1):2191621.
  • Kilian M, Chapple ILC, Hannig M, et al. The oral microbiome-an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–666. doi: 10.1038/sj.bdj.2016.865.
  • Uyen M, Busscher HJ, Weerkamp AH, et al. Surface free energies of oral streptococci and their adhesion to solids. FEMS Microbiol Lett. 1985;30:103–106. doi: 10.1111/j.1574-6968.1985.tb00993.x.
  • Quirynen M, Marechal M, Busscher HJ, et al. The influence of surface free energy and surface roughness on early plaque formation. J Clin Periodontol. 1990;17(3):138–144. doi: 10.1111/j.1600-051x.1990.tb01077.x.
  • He J, Stenhagen ISR, Dragland IS, et al. Preparation of a fluorinated dental resin system and its anti-adhesive properties against S. mutans. Dent Mater. 2023;39:402–409. doi: 10.1016/j.dental.2023.03.009.
  • Tong H, Liao M, Huang X, et al. Physicochemical properties, anti-adhesion effect against S. mutans, and resistance to mucin adsorption of dental resins contained silicone methacrylates. Silicon. 2022;14:5835–5845. doi: 10.1007/s12633-021-01344-5.
  • Zhang S, Liao M, Liu F, et al. Preparation of Bis-GMA free dental resin composites with anti-adhesion effect against Streptococcus mutans using synthesized fluorine-containing methacrylate (DFMA). J Mech Behav Biomed. 2002;131:105263. doi: 10.1016/j.jmbbm.2022.105263.
  • Liu X, Yang G, Lipik VT. Effects of fluorine atoms amount and fluorinated acrylic chain length chemical attached to hydroxyl groups on the hydrophobic properties of cotton fabrics. Mod Chem Appl 2017;5:1.
  • He J, Garoushi S, Vallittu PK, et al. Effect of low-shrinkage monomers on the physicochemical properties of experimental composite resin. Acta Biomater Odontol Scand. 2018;4:30–37. doi: 10.1080/23337931.2018.1444488.
  • Tokuda K, Ogino T, Kotera M, et al. Simple method for lowering poly(methyl methacrylate) surface energy with fluorination. Polym J. 2015;47:66–70. doi: 10.1038/pj.2014.91.
  • Kovalchuk NM, Trybala A, Starov V, et al. Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance? Adv Colloid Interfac. 2014;210:65–71. doi: 10.1016/j.cis.2014.04.003.
  • Dewaele M, Truffier-Boutry D, Devaux J, et al. Volume contraction in photocured dental resins: The shrinkage-conversion relationship revisited. Dent Mater. 2006;22(4):359–365. doi: 10.1016/j.dental.2005.03.014.
  • Aljabo A, Xia W, Liaqat S, et al. Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizing dental composites. Dent Mater. 2015;31(11):1279–1289. doi: 10.1016/j.dental.2015.08.149.
  • Moldovan M, Balazsi R, Soanca A, et al. Evaluation of the degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials. 2019;12(13):2109. doi: 10.3390/ma12132109.
  • Lu H, Stansbury JW, Nie J, et al. Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethacrylate-based dental resin systems. Biomaterials. 2005;26:1329–1336. doi: 10.1016/j.biomaterials.2004.04.041.
  • Boaro LCC, Gonçalves F, Guimarães TC, et al. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater. 2010;26(12):1144–1150. doi: 10.1016/j.dental.2010.08.003.
  • Soares CJ, Faria-e-Silva AL, Rodrigues MdP, et al. Polymerization shrinkage stress of composite resins and resin cements-what do we need to know? Braz Oral Res. 2017;31(suppl):e62. doi: 10.1590/1807-3107BOR-2017.vol31.0062.
  • He J, Liu F, Vallittu PK, et al. Synthesis of dimethacrylate monomers with low polymerization shrinkage and its application in dental composites materials. J Polym Res. 2012;19:1–9. doi: 10.1007/s10965-012-9932-3.
  • Goldman M. Polymerization shrinkage of resin-based restorative materials. Aust Dent J. 1983;28(3):156–161. doi: 10.1111/j.1834-7819.1983.tb05272.x.
  • He J, Liao L, Liu F, et al. Synthesis and characterization of a new dimethacrylate monomer based on 5,5’-bis(4-hydroxyphenyl)-hexahydro-4,7-methanoindan for root canal sealer application. J Mater Sci: Mater Med. 2010;21:1135–1142.
  • Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21:962–970. doi: 10.1016/j.dental.2005.04.018.
  • Schneider LF, Cavalcante LM, Silikas N. Shrinkage stresses generated during resin-composite application: a review. J Dent Biomech. 2010;2010:131630.
  • Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22:211–222. doi: 10.1016/j.dental.2005.05.005.
  • Liu X, Wang Z, Zhao C, et al. Synthesis, characterization and evaluation of a fluorinated resin monomer with low water sorption. J Mech Behav Biomed Mater. 2018;77:446–454. doi: 10.1016/j.jmbbm.2017.09.026.
  • Arima T, Hamada T, McCabe JF. The effect of cross-linking agents on some properties of HEMA-based resin. J Dent Res. 1995;74:1597–1601. doi: 10.1177/00220345950740091501.
  • Gajweski VES, Pfeifer CS, Fróes-Salgado, NRG, et al. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J. 2012;23:508–514. doi: 10.1590/s0103-64402012000500007.