608
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Metal-doped silicate and phosphate glasses for antibacterial dental biomaterials

, , , , , , , & show all
Article: 2284372 | Received 11 Oct 2023, Accepted 10 Nov 2023, Published online: 04 Dec 2023

References

  • Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5(6):1–10. doi: 10.1002/jbm.820050611.
  • Hench LL, Jones JR. Bioactive glasses: Frontiers and challenges. Front Bioeng Biotechnol. 2015;3:194. doi: 10.3389/fbioe.2015.00194.
  • Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17(11):967–78. doi: 10.1007/s10856-006-0432-z.
  • Tezvergil-Mutluay A, Seseogullari-Dirihan R, Feitosa VP, et al. Effects of composites containing bioactive glasses on demineralized dentin. J Dent Res. 2017;96(9):999–1005. doi: 10.1177/0022034517709464.
  • Par M, Gubler A, Attin T, et al. Ion release and hydroxyapatite precipitation of resin composites functionalized with two types of bioactive glass. J Dent. 2022;118:103950. doi: 10.1016/j.jdent.2022.103950.
  • Yun J, Tsui KH, Fan Z, et al. A biomimetic approach to evaluate mineralization of bioactive glass-loaded resin composites. J Prosthodont Res. 2022;66(4):572–581. doi: 10.2186/jpr.JPR_D_21_00177.
  • Hoikkala NJ, Siekkinen M, Hupa L, et al. Behavior of different bioactive glasses incorporated in polydimethylsiloxane endodontic sealer. Dent Mater. 2021;37(2):321–327. doi: 10.1016/j.dental.2020.11.013.
  • Cardoso OS, Meier MM, Carvalho EM, et al. Synthesis and characterization of experimental endodontic sealers containing bioactive glasses particles of NbG or 45S5. J Mech Behav Biomed Mater. 2022;125:104971. doi: 10.1016/j.jmbbm.2021.104971.
  • El-Gendy R, Kirkham J, Newby PJ, et al. Investigating the vascularization of tissue-engineered bone constructs using dental pulp cells and 45S5 Bioglass® scaffolds. Tissue Eng Part A. 2015;21(13–14):2034–43. doi: 10.1089/ten.tea.2014.0485.
  • Zhong Y, Liu J, Li X, et al. Effect of a novel bioactive glass-ceramic on dentinal tubule occlusion: an in vitro study. Aust Dent J. 2015;60(1):96–103. doi: 10.1111/adj.12241.
  • Shearer A, Montazerian M, Sly JJ, et al. Trends and perspectives on the commercialization of bioactive glasses. Acta Biomater. 2023;160:14–31. doi: 10.1016/j.actbio.2023.02.020.
  • Shearer A, Montazerian M, Mauro JC. Modern definition of bioactive glasses and glass-ceramics. Journal of Non-Crystalline Solids. 2023;608:122228. doi: 10.1016/j.jnoncrysol.2023.122228.
  • Barrak FN, Li S, Mohammed AA, Myant C, et al. Anti-inflammatory properties of S53P4 bioactive glass implant material. J Dent. 2022;127:104296. doi: 10.1016/j.jdent.2022.104296.
  • Galarraga-Vinueza ME, Passoni B, Benfatti CAM, et al. Inhibition of multi-species oral biofilm by bromide doped bioactive glass. J Biomed Mater Res A. 2017;105(7):1994–2003. doi: 10.1002/jbm.a.36056.
  • Bi L, Zobell B, Liu X, et al. Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds. Mater Sci Eng C Mater Biol Appl. 2014;42:816–24. doi: 10.1016/j.msec.2014.06.022.
  • Gubler M, Brunner TJ, Zehnder M, et al. Do bioactive glasses convey a disinfecting mechanism beyond a mere increase in pH? Int Endod J. 2008;41(8):670–8. doi: 10.1111/j.1365-2591.2008.01413.x.
  • Pickup DM, Valappil SP, Moss RM, et al. Preparation, structural characterization, and antibacterial properties of Ga-doped sol–gel phosphate-based glass. J Mater Sci. 2009;44:1858–67. doi: 10.1007/s10853-008-3237-2.
  • Hernández-Sierra JF, Ruiz F, Pena DC, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine. 2008;4(3):237–40. doi: 10.1016/j.nano.2008.04.005.
  • Bruna T, Maldonado-Bravo F, Jara P, et al. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202. doi: 10.3390/ijms22137202.
  • Soma T, Iwasaki R, Sato Y, et al. An ionic silver coating prevents implant-associated infection by anaerobic bacteria in vitro and in vivo in mice. Sci Rep. 2022;12(1):18387. doi: 10.1038/s41598-022-23322-6.
  • Lv S, Fan W, Fan B. Enhanced in vitro antibacterial effect against Enterococcus faecalis by using both low-dose cetylpyridinium chloride and silver ions. BMC Oral Health. 2023;23(1):299. doi: 10.1186/s12903-023-02972-6.
  • Tian X, Jiang X, Welch C, et al. Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism. ACS Appl Mater Interfaces. 2018;10(10):8443–50. doi: 10.1021/acsami.7b17274.
  • Tülü G, Kaya BÜ, Çetin ES, et al. Antibacterial effect of silver nanoparticles mixed with calcium hydroxide or chlorhexidine on multispecies biofilms. Odontology. 2021;109(4):802–11. doi: 10.1007/s10266-021-00601-8.
  • Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 200;74(7):2171–8. doi: 10.1128/AEM.02001-07.
  • Khan K, Javed S. Functionalization of inorganic nanoparticles to augment antimicrobial efficiency: A critical analysis. Curr Pharm Biotechnol. 2018;19(7):523–36. doi: 10.2174/1389201019666180731121401.
  • Bellantone M, Coleman NJ, Hench LL. Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res. 2000;51(3):484–90. doi: 10.1002/1097-4636(20000905)51:3<484::AID-JBM24>3.0.CO;2-4.
  • Blaker JJ, Nazhat SN, Boccaccini AR. Development and characterization of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials. 2004;25(7–8):1319–29. doi: 10.1016/j.biomaterials.2003.08.007.
  • Jones JR, Ehrenfried LM, Saravanapavan P, et al. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J Mater Sci Mater Med. 2006;17(11):989–96. doi: 10.1007/s10856-006-0434-x.
  • Phetnin R, Rattanachan ST. Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres. Journal of Sol-Gel Science and Technology. 2015;75:279–90. doi: 10.1007/s10971-015-3697-1.
  • Bellantone M, Williams HD, Hench LL. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother. 2002;46(6):1940–5. doi: 10.1128/AAC.46.6.1940-1945.2002.
  • Zhu N, Chatzistavrou X, Ge L, et al. Biological properties of modified bioactive glass on dental pulp cells. J Dent. 2019;83:18–26. doi: 10.1016/j.jdent.2019.01.017.
  • Zhu N, Chatzistavrou X, Papagerakis P, et al. Silver-doped bioactive glass/chitosan hydrogel with potential application in dental pulp repair. ACS Biomater Sci Eng. 2019;5(9):4624–33. doi: 10.1021/acsbiomaterials.9b00811.
  • Kattan H, Chatzistavrou X, Boynton J, Dennison J, Yaman P, Papagerakis P. Physical properties of an Ag-doped bioactive flowable composite resin. Materials (Basel). 2015;8(8):4668–4678. doi: 10.3390/ma8084668.
  • Lee SM, Kim IR, Park BS, et al. Remineralization property of an orthodontic primer containing a bioactive glass with silver and zinc. Materials (Basel). 2017;10(11):1253. doi: 10.3390/ma10111253.
  • Wu C, Zhou Y, Xu M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation, and antibacterial activity. Biomaterials. 2013;34(2):422–33. doi: 10.1016/j.biomaterials.2012.09.066.
  • Li J, Zhai D, Lv F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity, and wound healing. Acta Biomater. 2016;36:254–66. doi: 10.1016/j.actbio.2016.03.011.
  • Zheng K, Kang J, Rutkowski B, et al. Toward highly dispersed mesoporous bioactive glass nanoparticles with high Cu concentration using Cu/ascorbic acid complex as precursor. Front Chem. 2019;7:497. doi: 10.3389/fchem.2019.00497.
  • Choe YE, Kim YJ, Jeon SJ, et al. Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dent Mater. 2022;38(2):363–375. doi: 10.1016/j.dental.2021.12.019.
  • Shetty S, Sekar P, Shetty RM, et al. Antibacterial and antibiofilm efficacy of copper-doped phosphate glass on pathogenic bacteria. Molecules. 2023;28(7):3179. doi: 10.3390/molecules28073179.
  • Phan TN, Buckner T, Sheng J, et al. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol Immunol. 2004;19(1):31–8. doi: 10.1046/j.0902-0055.2003.00109.x.
  • Raja FNS, Worthington T, de Souza LPL, et al. Synergistic antimicrobial metal oxide-doped phosphate glasses; a potential strategy to reduce antimicrobial resistance and host cell toxicity. ACS Biomater Sci Eng. 2022;8(3):1193–9. doi: 10.1021/acsbiomaterials.1c00876.
  • Atkinson I, Anghel EM, Predoana L, et al. Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses. Ceram Int 2016;42(2):3033–45. doi: 10.1016/j.ceramint.2015.10.090.
  • Boyd D, Li H, Tanner DA, et al. The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. J Mater Sci Mater Med. 2006;17(6):489–94. doi: 10.1007/s10856-006-8930-6.
  • Clarkin O, Wren A, Thornton R, Cooney J, Towler M. Antibacterial analysis of a zinc-based glass polyalkenoate cement. J Biomater Appl. 2011;26(3):277–92. doi: 10.1177/0885328210364430.
  • Coughlan A, Scanlon K, Mahon BP, et al. Zinc and silver glass polyalkenoate cements: an evaluation of their antibacterial nature. Biomed Mater Eng. 2010;20(2):99–106. doi: 10.3233/BME-2010-0620.
  • Ramadoss R, Padmanaban R, Subramanian B. Role of bioglass in enamel remineralization: Existing strategies and future prospects-A narrative review. J Biomed Mater Res B Appl Biomater. 2022;110(1):45–66. doi: 10.1002/jbm.b.34904.
  • Lee MJ, Kim MJ, Mangal U, et al. Zinc-modified phosphate-based glass micro-filler improves Candida albicans resistance of auto-polymerized acrylic resin without altering mechanical performance. Sci Rep. 2022;12(1):19456. doi: 10.1038/s41598-022-24172-y.
  • Lee MJ, Seo YB, Seo JY, et al. Development of a bioactive flowable resin composite containing a zinc-doped phosphate-based glass. Nanomaterials (Basel). 2020;10(11):2311. doi: 10.3390/nano10112311.
  • Kim MJ, Seo JY, Jung IJ, et al. A novel orthodontic adhesive containing zinc-doped phosphate-based glass for preventing white spot lesions. J Dent. 2023;137:104689. doi: 10.1016/j.jdent.2023.104689.
  • Kelson AB, Carnevali M, Truong-Le V. Gallium-based anti-infectives: Targeting microbial iron-uptake mechanisms. Curr Opin Pharmacol. 2013;13(5):707–16. doi: 10.1016/j.coph.2013.07.001.
  • Zemke AC, Madison CJ, Kasturiarachi N, et al. Antimicrobial synergism toward Pseudomonas aeruginosa by Gallium(III) and inorganic nitrite. Front Microbiol. 2020;11:2113. doi: 10.3389/fmicb.2020.02113.
  • Kircheva N, Dudev T. Competition between abiogenic and biogenic metal cations in biological systems: mechanisms of gallium’s anticancer and antibacterial effect. J Inorg Biochem. 2021;214:111309. doi: 10.1016/j.jinorgbio.2020.111309.
  • Zeng J, Wu L, Liu Z, et al. Gain-of-function mutations in acid stress response (evgS) protect Escherichia coli from killing by gallium nitrate, an antimicrobial candidate. Antimicrob Agents Chemother. 2021;65(3):e01595–20. doi: 10.1128/AAC.01595-20.
  • Goss CH, Kaneko Y, Khuu L, et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci Transl Med. 2018;10(460):eaat7520. doi: 10.1126/scitranslmed.aat7520.
  • Li F, Liu F, Huang K, et al. Advancement of gallium and gallium-based compounds as antimicrobial agents. Front Bioeng Biotechnol. 2022;10:827960. doi: 10.3389/fbioe.2022.827960.
  • Minandri F, Bonchi C, Frangipani E, et al. Promises and failures of gallium as an antibacterial agent. Future Microbiol. 2014;9(3):379–97. doi: 10.2217/fmb.14.3.
  • Crunkhorn S. Antibacterial agents: Gallium fights infection in phase I trial. Nat Rev Drug Discov. 2018;17(11):786. doi: 10.1038/nrd.2018.186.
  • Franchini M, Lusvardi G, Malavasi G, et al. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity. Mater Sci Eng C Mater Biol Appl. 2012;32(6):1401–6. doi: 10.1016/j.msec.2012.04.016.
  • Pourshahrestani S, Zeimaran E, Adib Kadri N, Gargiulo N, Samuel S, Naveen SV, Kamarul T, Towler MR. Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. J Mater Chem B. 2016;4(1):71–86. doi: 10.1039/c5tb02062j.
  • Łapa A, Cresswell M, Campbell I, et al. Gallium- and cerium-doped phosphate glasses with antibacterial properties for medical applications. Adv Eng Mater. 2020;22(9):1901577. doi: 10.1002/adem.201901577.
  • Sahdev R, Ansari TI, Higham SM, et al. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment. J Biomater Appl. 2015;30(1):85–92. doi: 10.1177/0885328215571952.
  • Wang M, Yang Y, Chi G, et al. A 3D printed Ga containing scaffold with both anti-infection and bone homeostasis-regulating properties for the treatment of infected bone defects. J Mater Chem B. 2021;9(23):4735–45. doi: 10.1039/d1tb00387a.
  • Łapa A, Cresswell M, Campbell I, et al. Ga and Ce ion-doped phosphate glass fibers with antibacterial properties and their composite for wound healing applications. J Mater Chem B. 2019;7(45):7246. doi: 10.1039/c9tb90158b.
  • Valappil SP, Coombes M, Wright L, et al. Role of gallium and silver from phosphate-based glasses on in vitro dual species oral biofilm models of Porphyromonas gingivalis and Streptococcus gordonii. Acta Biomater. 2012;8(5):1957–65. doi: 10.1016/j.actbio.2012.01.017.
  • Imazato S, Kohno T, Tsuboi R, Thongthai P, Xu HH, Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J. 2020;39(1):69–79. doi: 10.4012/dmj.2019-350.
  • Liu Y, Kohno T, Tsuboi R, Kitagawa H, Imazato S. Acidity-induced release of zinc ion from BioUnionTM filler and its inhibitory effects against Streptococcus mutans. Dent Mater J. 2020;39(4):547–553. doi: 10.4012/dmj.2019-061.
  • Liu Y, Kohno T, Tsuboi R, Thongthai P, Fan D, Sakai H, Kitagawa H, Imazato S. Antibacterial effects and physical properties of a glass ionomer cement containing BioUnion filler with acidity-induced ability to release zinc ion. Dent Mater J. 2021;40(6):1418–1427. doi: 10.4012/dmj.2021-052.
  • Kohno T, Kitagawa H, Tsuboi R, et al. Establishment of novel in vitro culture system with the ability to reproduce oral biofilm formation on dental materials. Sci Rep. 2021;11(1):21188. doi: 10.1038/s41598-021-00803-8.
  • Deng F, Sakai H, Kitagawa H, et al. Fabrication of pH-Responsive Zn2+-releasing glass particles for smart antibacterial restoratives. Molecules. 2022;27(21):7202. doi: 10.3390/molecules27217202.
  • Imazato S, Kitagawa H. Oral Biofilms and Modern Dental Materials. Advances Toward Bioactivity. Dental resin-based materials with antibacterial properties: contact inhibition and controlled release. (Ionescu AC, Hahnel S, ed.), Springer, Switzerland, pp. 127–140, 2021.
  • Kohno T, Liu Y, Tsuboi R, Kitagawa H, Imazato S. Evaluation of ion release and the recharge ability of glass-ionomer cement containing BioUnion filler using an in vitro saliva-drop setting assembly. Dent Mater. 2021;37(5):882–893. doi: 10.1016/j.dental.2021.02.022.
  • Fan X, Yahia L, Sacher E. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology (Basel). 2021;10(2):137. doi: 10.3390/biology10020137.
  • Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater. 2003;19(6):449–57. doi: 10.1016/s0109-5641(02)00102-1.
  • Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 2008;9:035004. doi: 10.1088/1468-6996/9/3/035004.
  • Wang L, He H, Yu Y, et al. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem. 2014;100:45–53. doi: 10.1016/j.jinorgbio.2014.02.016.