189
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Voltammetric study of dopamine at tavaborole modified carbon paste electrode

, , , &
Article: 2305873 | Received 19 Dec 2023, Accepted 10 Jan 2024, Published online: 26 Feb 2024

References

  • Arpitha, S. B., B. E. Kumara Swamy, and J. K. Shashikumara. 2023. “An Efficient Electrochemical Sensor Based on ZnO/Co3O4 Nanocomposite Modified Carbon Paste Electrode for the Sensitive Detection of Hydroquinone and Resorcinol.” Inorganic Chemistry Communications 152: 110656. https://doi.org/10.1016/j.inoche.2023.110656
  • Ashoka, N. B., B. E. K. Swamy, and H. Jayadevappa. 2017. “Nanorod TiO2 Sensor for Dopamine: A Voltammetric Study.” New Journal of Chemistry 41 (20): 11817–11827. https://doi.org/10.1039/C7NJ02188G
  • Bagherzadeh, M., S. A. Mozaffari, and M. Momeni. 2015. “Fabrication and Electrochemical Fabrication Characterization of Dopamine Sensing Electrode Based on Modified Grapheme Nanosheets.” Analytical Methods 7 (21): 9317–9323. https://doi.org/10.1039/C5AY02284C
  • Baig, N., A.-N. Kawde, and M. Ibrahim. 2020. “Efficient Ionic Medium Supported Reduced Graphene Oxide-Based Sensor for Selective Sensing of Dopamine.” Materials Advances 1 (4): 783–793. https://doi.org/10.1039/D0MA00322K
  • Cao, Q., P. Puthongkham, and B. Jill Venton. 2019. “Review: new Insights into Optimizing Chemical and 3D Surface Structures of Carbon Electrodes for Neurotransmitter Detection.” Analytical Methods 11 (3): 247–261. https://doi.org/10.1039/C8AY02472C
  • Cervini, P., I. A. Mattioli, and E. T. G. Cavalheiro. 2019. “Developing a Screen-Printed Graphite Polyurethane Composite Electrode Modified with Gold Nanoparticles for the Voltammetric Determination of Dopamine.” RSC Advances 9 (72): 42306–42315. https://doi.org/10.1039/c9ra09046k
  • Chen, X., N. Li, Y. Rong, Y. Hou, Y. Huang, and W. Liang. 2021. “Wenting Liang, b-Cyclodextrin Functionalized 3D Reduced Graphene Oxide Composite-Based Electrochemical Sensor for the Sensitive Detection of Dopamine.” RSC Advances 11 (45): 28052–28060. https://doi.org/10.1039/d1ra02313f
  • Chetankumar, K., B. E. Kumara Swamy, and S. C. Sharma. 2019. “Poly (Benzoguanamine) Modified Sensor for Catechol in Presence of Hydroquinone: A Voltammetric Study.” Journal of Electroanalytical Chemistry 849: 113365. https://doi.org/10.1016/j.jelechem.2019.113365
  • Corona-Avendaño, S., M. T. Ramírez-Silva, M. Palomar-Pardavé, L. Hernández-Martínez, M. Romero-Romo, and G. Alarcón-Ángeles. 2010. “Influence of CTAB on the Electrochemical Behavior of Dopamine and on Its Analytic Determination in the Presence of Ascorbic Acid.” Journal of Applied Electrochemistry 40 (2): 463–474. https://doi.org/10.1007/s10800-009-0017-x
  • da Silva, L. V., N. D. dos Santos, A. K. A. de Almeida, D. Di E. R. dos Santos, A. C. F. Santos, M. C. França, D. J. P. Lima, P. R. Lima, and M. O. F. Goulart. 2021. “A New Electrochemical Sensor Based on Oxidized Capsaicin/Multi-Walled Carbon Nanotubes/Glassy Carbon Electrode for the Quantification of Dopamine, Epinephrine, and Xanthurenic, Ascorbic and Uric Acids.” Journal of Electroanalytical Chemistry 881: 114919. https://doi.org/10.1016/j.jelechem.2020.114919
  • Fredj, Z., M. Ben Ali, M. N. Abbas, and E. Dempsey. 2020. “Simultaneous Determination of Ascorbic Acid, Uricacid and Dopamine Using Silver Nanoparticles and Copper Monoamino-Phthalocyanine Functionalised Acrylate Polymer, Journal of.” Analytical Methods 12 (31): 3883–3891. https://doi.org/10.1039/D0AY01183E
  • Fu, Y., Q. Sheng, and J. Zheng. 2017. “The Novel Sulfonated Polyaniline-Decorated Carbon Nanosphere Nanocomposites for Electrochemical Sensing of Dopamine.” New Journal of Chemistry 41 (24): 15439–15446. https://doi.org/10.1039/C7NJ03086J
  • Goyal, R. N., and S. P. Singh. 2008. “Simultaneous Voltammetric Determination of Dopamine and Adenosine Using a Single-Walled Carbon Nano Tube – MCPE.” Carbon 46 (12): 1556–1562. https://doi.org/10.1016/j.carbon.2008.06.051
  • Guo, H., L. Sun, M. Yang, M. Wang, N. Wu, T. Zhang, J. Zhang, F. Yang, and W. Yang. 2021. “A Novel Electrochemical Sensor Based on TAPT-TFP-COF/COOH-MWCNT for Simultaneous Detection of Dopamine and Paracetamol, Journal of.” Analytical Methods 13 (42): 4994–5002. https://doi.org/10.1039/D1AY01537K
  • He, C., M. Tao, C. Zhang, Y. He, W. Xu, Y. Liu, and W. Zhu. 2022. “Microelectrode-Based Electrochemical Sensing Technology for in Vivo Detectionof Dopamine: Recent Developments and Future Prospects.” Critical Reviews in Analytical Chemistry 52 (3): 544–554. https://doi.org/10.1080/10408347.2020.1811946
  • Kamyabi, M. A., and F. Aghajanloo. 2009. “Electrocatalytic Response of Dopamine at a CPE Modifified with Ferrocene.” Roat Che Act 82: 599–606.
  • Li, N., C. Nan, X. Mei, Y. Sun, H. Feng, and Y. Li. 2020. “Electrochemical Sensor Based on Dual-Template Molecularly Imprinted Polymer and Nanoporous Gold Leaf Modified Electrode for Simultaneous Determination of Dopamine and Uric Acid.” Mikrochimica Acta 187 (9): 496. https://doi.org/10.1007/s00604-020-04413-5
  • Li, S., Y. Ma, Y. Liu, G. Xin, M. Wang, Z. Zhang, and Z. Liu. 2019. “Electrochemical Sensor Based on a Three Dimensional Nanostructured MoS2 nanospherePANI/Reduced Graphene Oxide Composite for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid.” RSC Advances 9 (6): 2997–3003. https://doi.org/10.1039/c8ra09511f
  • Liao, C., M. Zhang, L. Niu, Z. Zheng, and F. Yan. 2014. “Organic Electrochemical Transistors with Graphene-Modified Gate Electrodes for Highly Sensitive and Selective Dopamine Sensors.” Journal of Materials Chemistry B 2: 191–200.
  • Lin, K. C., T. H. Tsai, and S. M. Chen. 2010. “Performing Enzyme-Free H2O2 Biosensor and Simultaneous Determination for AA, DA and UA by MWCNT-PEDOT Film.” Biosensors & Bioelectronics 26 (2): 608–614. https://doi.org/10.1016/j.bios.2010.07.019
  • Liu, G., J. Li, L. Wang, N. Zong, S. Yu, and F. Li. 2012. “Discrimination of Dopamine from Ascorbic Acid and Uric Acid on Thioglycolic Acid Modified Gold Electrode.” Analytical Methods 4 (3): 609. https://doi.org/10.1039/c2ay05838c
  • Liu, X., H. Zhua, and X. Yang. 2014. “An Electrochemical Sensor for Dopamine Based on Poly(o-Phenylenediamine) Functionalized with Electrochemically Reduced Graphene Oxide.” RSC Advances. 4: 3706.
  • Martí, M., G. Fabregat, F. Estrany, C. Alemán, and E. Armelin. 2010. “Nanostructured Conducting Polymer for Dopamine Detection.” Journal of Materials Chemistry 20 (47): 10652. https://doi.org/10.1039/c0jm01364a
  • Pandey, P. K., K. Rawat, T. Prasad, and H. B. Bohidar. 2020. “Multifunctional, Fluorescent DNA-Derived Carbon Dots for Biomedical Applications: Bioimaging, Luminescent DNA Hydrogels, and Dopamine Detection, Journal of Materials Chemistry. B, 8 (6), 1277. https://doi.org/10.1039/c9tb01863h
  • Polepalli, S., B. Uttam, and C. P. Rao. 2020. “Protein–Inorganic Nano Hybrid Sheets of Pd Embedded BSA as a Robust Catalyst in Water for Oxidase Mimic Activity and C–C Coupling Reactions, and as a Sustainable Material for Micromolar Sensing of Dopamine.” Materials Advances 1 (6): 2074–2083. https://doi.org/10.1039/D0MA00512F
  • Pradhan, T., H. S. Jung, J. H. Jang, T. W. Kim, C. Kang, and J. S. Kim. 2014. “Chemical Sensing of Neurotransmitters.” Chemical Society Reviews 43 (13): 4684–4713. https://doi.org/10.1039/c3cs60477b
  • Pruneanu, S., A. R. Biris, F. Pogacean, C. Socaci, M. Coros, M. C. Rosu, F. Watanabe, and A. S. Biris. 2015. “The Influence of Uric and Ascorbic Acid on the Electrochemical Detection of Dopamine Using Graphene-Modified Electrodes.” Electrochimica Acta 154: 197–204. https://doi.org/10.1016/j.electacta.2014.12.046
  • Rajendrachari, S., G. Kudur Jayaprakash, A. Pandith, A. C. Karaoglanli, and O. Uzun. 2022. “Electrocatalytic Investigation by Improving the Charge Kinetics between Carbon Electrodes and Dopamine Using Bio-Synthesized CuO Nanoparticles.” Catalysts 12 (9): 994. https://doi.org/10.3390/catal12090994
  • Rajendrachari, S., H. Arslanoglu, A. Yaras, and S. M. Golabhanvi. 2023. “Electrochemical Detection of Uric Acid Based on a Carbon Paste Electrode Modified with Ta2O5 Recovered from Ore by a Novel Method.” ACS Omega 8 (49): 46946–46954. https://doi.org/10.1021/acsomega.3c06749
  • Rajendrachari, S., N. Basavegowda, R. Vinaykumar, D. Narsimhachary, P. Somu, and M. Lee. 2023. “Electrocatalytic Determination of Methyl Orange Dye Using Mechanically Alloyed Novel Metallic Glass Modified Carbon Paste Electrode by Cyclic Voltammetry.” Inorganic Chemistry Communications 155: 111010. https://doi.org/10.1016/j.inoche.2023.111010
  • Rattanaumpa, T., S. Maensiri, and K. Ngamchuea. 2022. “Microporous Carbon in the Selective Electrooxidation of Molecular Biomarkers: uric Acid, Ascorbic Acid and Dopamine.” RSC Advances 12 (29): 18709–18721. https://doi.org/10.1039/d2ra03126d
  • Sharath Shankar, S., B. E. Kumara Swamy, U. Chandra, G. Manjunatha, and B. S. Sherigara. 2009. “Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid with CTAB Modified Carbon Paste Electrode.” International Journal of Electrochemical Science 4 (4): 592–601. https://doi.org/10.1016/S1452-3981(23)15166-2
  • Shashikumara, J. K., and B. E. K. Swamy. 2020. “Electrochemical Investigation of Dopamine in Presence of Uric Acid Andascorbic Acid at Poly (Reactive Blue) Modified Carbon Paste Electrode: A Voltammetric Study.” Sensors International 1: 100008. https://doi.org/10.1016/j.sintl.2020.100008
  • Shashikumara, J. K., B. E. Kumara Swamy, and S. C. Sharma. 2020. “A Simple Sensing Approach for the Determination of Dopamine by Poly (Yellow PX4R) Pencil Gtaphite Electrode.” Chemical Data Collections 27: 100366. https://doi.org/10.1016/j.cdc.2020.100366
  • Shashikumara, J. K., B. Kalaburgi, B. E. K. Swamy, H. Nagabhushana, S. C. Sharma, and P. Lalitha. 2021. “Effect of RGO-Y2O3 and RGO-Y2O3:Cr3+ Nanocomposite Sensor for Dopamine.” Scientific Reports 11 (1): 9372. https://doi.org/10.1038/s41598-021-87749-z
  • Sobahi, N., M. Imran, M. E. Khan, A. Mohammad, M. M. Alam, T. Yoon, I. M. Mehedi, M. A. Hussain, M. J. Abdulaal, and A. Jiman. 2022. “Facile Fabrication of CuO Nanoparticles Embedded in N-Doped Carbon Nanos Tructure for Electrochemical Sensing of Dopamine.” Bioinorganic Chemistry and Applications 2022: 6482133. https://doi.org/10.1155/2022/6482133
  • Sunil Kumar Naik, T. S., M. Martin Mwaurah, and B. E. KumaraSwamy. 2018. “Fabrication of Poly (Sudan III) Modifified Carbon Paste Electrode Sensor for Dopamine: A Voltammetric Study.” Jeac 834: 73.
  • Xia, C., N. Wang, and L. Wang. 2020. “Optical and Electro-Catalytic Properties of Bundled ZnO Nanowires Grown on an ITO Substrate.” Journal of Nanoparticle Research 12 (5): 1869–1875. https://doi.org/10.1007/s11051-009-9748-1
  • Xu, G., Z. A. Jarjes, V. Desprez, P. A. Kilmartin, and J. Travas-Sejdic. 2018. “Sensitive, Selective, Disposable Electrochemical Dopamine Sensor Based on PEDOT-Modified Laser Scribed Graphene.” Biosensors & Bioelectronics 107: 184–191.
  • Yuan, Y., S. Wang, P. Wu, T. Yuan, and X. Wang. 2022. “Lignosulfonate in Situ-Modified Reduced Graphene Oxide Biosensors for the Electrochemical Detection of Dopamine.” RSC Advances 12 (48): 31083–31090. https://doi.org/10.1039/d2ra05635f
  • Zestos, A. G., C. Yang, C. B. Jacobs, D. Hensley, and B. J. Venton. 2015. “Carbon Nanospikes Grown on Metal Wires as Microelectrode Sensors for Dopamine, Journal of.” The Analyst 140 (21): 7283–7292. https://doi.org/10.1039/c5an01467k
  • Zhang, F., Y. Li, Y. Gu, Z. Wang, and C. Wang. 2011. “One-Pot Solvothermal Synthesis of a Cu2O/Graphene Nanocomposite and Its Application in an Electrochemical Sensor for Dopamine.” Microchimica Acta 173 (1-2): 103–109. https://doi.org/10.1007/s00604-010-0535-6
  • Zhong, M., Y. Teng, S. Pang, L. Yan, and X. Kan. 2015. “Pyrrole–Phenylboronic Acid: A Novel Monomer for Dopamine Recognition and Detection Based on Imprinted Electrochemical Sensor.” Biosensors & Bioelectronics 64: 212–218. https://doi.org/10.1016/j.bios.2014.08.083