986
Views
77
CrossRef citations to date
0
Altmetric
Reviews

Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: Is a combination of pharmacogenomics and metabolomics required to improve personalized medicine?

, MD PhD, &
Pages 607-620 | Published online: 08 May 2009

Bibliography

  • Singh G, Triadafilopoulos G. Epidemiology of NSAID induced gastrointestinal complications. J Rheumatol Suppl 1999;56:18-24
  • Bloom BS. Direct medical costs of disease and gastrointestinal side effects during treatment for arthritis. Am J Med 1988;84:20-4
  • Tarone RE, Blot WJ, McLaughlin JK. Nonselective nonaspirin nonsteroidal anti-inflammatory drugs and gastrointestinal bleeding: relative and absolute risk estimates from recent epidemiologic studies. Am J Ther 2004;11:17-25
  • Walan A, Wahlqvist P. Pharmacoeconomic aspects of non-steroidal anti-inflammatory drug gastropathy. Ital J Gastroenterol Hepatol 1999;31(Suppl 1):S79-88
  • Rahme E, Joseph L, Kong SX, et al. Cost of prescribed NSAID-related gastrointestinal adverse events in elderly patients. Br J Clin Pharmacol 2001;52:185-92
  • Meyer UA. Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 2004;5:669-76
  • Scordo MG, Aklillu E, Yasar U, et al. Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol 2001;52:447-50
  • Restrepo J, Garcia-Martin E, Martinez C, et al. Polymorphic drug metabolism in anaesthesia. Curr Drug Metab 2009;10:236-46
  • Rodrigues AD. Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxygenase inhibitors the same? Drug Metab Dispos 2005;33:1567-75
  • Paulson SK, Hribar JD, Liu NW, et al. Metabolism and excretion of [(14)C]celecoxib in healthy male volunteers. Drug Metab Dispos 2000;28:308-14
  • Sandberg M, Yasar U, Stromberg P, et al. Oxidation of celecoxib by polymorphic cytochrome P450 2C9 and alcohol dehydrogenase. Br J Clin Pharmacol 2002;54:423-9
  • Garcia-Martin E, Martinez C, Tabares B, et al. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther 2004;76:119-27
  • Chang SY, Li W, Traeger SC, et al. Confirmation that cytochrome P450 2C8 (CYP2C8) plays a minor role in (S)-(+)- and (R)-(-)-ibuprofen hydroxylation in vitro. Drug Metab Dispos 2008;36:2513-22
  • Kuehl GE, Lampe JW, Potter JD, et al. Glucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes. Drug Metab Dispos 2005;33:1027-35
  • Guo Y, Zhang Y, Wang Y, et al. Role of cyp2c9 and its variants (cyp2c9*3 and cyp2c9*13) in the metabolism of lornoxicam in humans. Drug Metab Dispos 2005;33:749-53
  • Zhang Y, Zhong D, Si D, et al. Lornoxicam pharmacokinetics in relation to cytochrome P450 2C9 genotype. Br J Clin Pharmacol 2005;59:14-7
  • Liu YL, Zhang W, Tan ZR, et al. Effect of the CYP2C9*3 allele on lornoxicam metabolism. Clin Chim Acta 2006;364:287-91
  • Hitzenberger G, Radhofer-Welte S, Takacs F, et al. Pharmacokinetics of lornoxicam in man. Postgrad Med J 1990;66(Suppl 4):S22-7
  • Richardson CJ, Blocka KL, Ross SG, et al. Piroxicam and 5´-hydroxypiroxicam kinetics following multiple dose administration of piroxicam. Eur J Clin Pharmacol 1987;32:89-91
  • Perini JA, Vianna-Jorge R, Brogliato AR, et al. Influence of CYP2C9 genotypes on the pharmacokinetics and pharmacodynamics of piroxicam. Clin Pharmacol Ther 2005;78:362-9
  • Zhao J, Leemann T, Dayer P. In vitro oxidation of oxicam NSAIDS by a human liver cytochrome P450. Life Sci 1992;51:575-81
  • Bort R, Ponsoda X, Carrasco E, et al. Metabolism of aceclofenac in humans. Drug Metab Dispos 1996;24:834-41
  • Crespi CL, Chang TK, Waxman DJ. Determination of CYP2C9-catalyzed diclofenac 4´-hydroxylation by high-performance liquid chromatography. Methods Mol Biol 2006;320:109-13
  • Bort R, Mace K, Boobis A, et al. Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem Pharmacol 1999;58:787-96
  • Tang W. The metabolism of diclofenac–enzymology and toxicology perspectives. Curr Drug Metab 2003;4:319-29
  • King C, Tang W, Ngui J, et al. Characterization of rat and human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of diclofenac. Toxicol Sci 2001;61:49-53
  • Kumar S, Samuel K, Subramanian R, et al. Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide. J Pharmacol Exp Ther 2002;303:969-78
  • Davies NM. Clinical pharmacokinetics of flurbiprofen and its enantiomers. Clin Pharmacokinet 1995;28:100-14
  • Zgheib NK, Frye RF, Tracy TS, et al. Evaluation of flurbiprofen urinary ratios as in vivo indices for CYP2C9 activity. Br J Clin Pharmacol 2007;63:477-87
  • Nakajima M, Inoue T, Shimada N, et al. Cytochrome P450 2C9 catalyzes indomethacin O-demethylation in human liver microsomes. Drug Metab Dispos 1998;26:261-6
  • Duggan DE, Hogans AF, Kwan KC, et al. The metabolism of indomethacin in man. J Pharmacol Exp Ther 1972;181:563-75
  • Chesne C, Guyomard C, Guillouzo A, et al. Metabolism of Meloxicam in human liver involves cytochromes P4502C9 and 3A4. Xenobiotica 1998;28:1-13
  • Ludwig E, Schmid J, Beschke K, et al. Activation of human cytochrome P-450 3A4-catalyzed meloxicam 5´-methylhydroxylation by quinidine and hydroquinidine in vitro. J Pharmacol Exp Ther 1999;290:1-8
  • Dell D, Joly R, Meister W, et al. Determination of tenoxicam, and the isolation, identification and determination of Ro 17-6661, its major metabolite, in human urine. J Chromatogr 1984;317:483-92
  • Olkkola KT, Brunetto AV, Mattila MJ. Pharmacokinetics of oxicam nonsteroidal anti-inflammatory agents. Clin Pharmacokinet 1994;26:107-20
  • Peiro AM, Novalbos J, Zapater P, et al. Pharmacogenetic relevance of the CYP2C9*3 allele in a tenoxicam bioequivalence study performed on Spaniards. Pharmacol Res 2009;59:62-8
  • Hutt AJ, Caldwell J, Smith RL. The metabolism of aspirin in man: a population study. Xenobiotica 1986;16:239-49
  • Bigler J, Whitton J, Lampe JW, et al. CYP2C9 and UGT1A6 genotypes modulate the protective effect of aspirin on colon adenoma risk. Cancer Res 2001;61:3566-9
  • MacDonald CJ, Ciolino HP, Yeh GC. The drug salicylamide is an antagonist of the aryl hydrocarbon receptor that inhibits signal transduction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Cancer Res 2004;64:429-34
  • Takemoto JK, Reynolds JK, Remsberg CM, et al. Clinical pharmacokinetic and pharmacodynamic profile of etoricoxib. Clin Pharmacokinet 2008;47:703-20
  • Jaggi R, Addison RS, King AR, et al. Conjugation of desmethylnaproxen in the rat–a novel acyl glucuronide-sulfate diconjugate as a major biliary metabolite. Drug Metab Dispos 2002;30:161-6
  • Bowalgaha K, Elliot DJ, Mackenzie PI, et al. S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen. Br J Clin Pharmacol 2005;60:423-33
  • Sullivan-Klose TH, Ghanayem BI, Bell DA, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996;6:341-9
  • Halpin RA, Porras AG, Geer LA, et al. The disposition and metabolism of rofecoxib, a potent and selective cyclooxygenase-2 inhibitor, in human subjects. Drug Metab Dispos 2002;30:684-93
  • Zhang JY, Zhan J, Cook CS, et al. Involvement of human UGT2B7 and 2B15 in rofecoxib metabolism. Drug Metab Dispos 2003;31:652-8
  • Karim A, Laurent A, Slater ME, et al. A pharmacokinetic study of intramuscular (i.m.) parecoxib sodium in normal subjects. J Clin Pharmacol 2001;41:1111-9
  • Ibrahim A, Karim A, Feldman J, et al. The influence of parecoxib, a parenteral cyclooxygenase-2 specific inhibitor, on the pharmacokinetics and clinical effects of midazolam. Anesth Analg 2002;95:667-73, table of contents
  • Agundez JA, Carrillo JA, Martinez C, et al. Aminopyrine metabolism in man: the acetylation of aminoantipyrine cosegregates with acetylation of caffeine. Ther Drug Monit 1995;17:1-5
  • Agundez JA, Martinez C, Benitez J. Metabolism of aminopyrine and derivatives in man: in vivo study of monomorphic and polymorphic metabolic pathways. Xenobiotica 1995;25:417-27
  • Levy M, Zylber-Katz E, Rosenkranz B. Clinical pharmacokinetics of dipyrone and its metabolites. Clin Pharmacokinet 1995;28:216-34
  • Saito Y, Katori N, Soyama A, et al. CYP2C8 haplotype structures and their influence on pharmacokinetics of paclitaxel in a Japanese population. Pharmacogenet Genomics 2007;17:461-71
  • Available from: http://www.cypalleles.ki.se/cyp2c8.htm
  • Garcia-Martin E, Martinez C, Ladero JM, et al. Interethnic and intraethnic variability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals. Mol Diagn Ther 2006;10:29-40
  • Hichiya H, Tanaka-Kagawa T, Soyama A, et al. Functional characterization of five novel CYP2C8 variants, G171S, R186X, R186G, K247R, and K383N, found in a Japanese population. Drug Metab Dispos 2005;33:630-6
  • Blaisdell J, Jorge-Nebert LF, Coulter S, et al. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 2004;14:527-37
  • Zhao F, Loke C, Rankin SC, et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 2004;76:210-9
  • DeLozier TC, Lee SC, Coulter SJ, et al. Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast Asians. J Pharmacol Exp Ther 2005;315:1085-90
  • Veenstra DL, Blough DK, Higashi MK, et al. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin Pharmacol Ther 2005;77:353-64
  • Maekawa K, Fukushima-Uesaka H, Tohkin M, et al. Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet Genomics 2006;16:497-514
  • Yin T, Maekawa K, Kamide K, et al. Genetic variations of CYP2C9 in 724 Japanese individuals and their impact on the antihypertensive effects of losartan. Hypertens Res 2008;31:1549-57
  • Garcia-Martin E, Martinez C, Ladero JM, et al. High frequency of mutations related to impaired CYP2C9 metabolism in a Caucasian population. Eur J Clin Pharmacol 2001;57:47-9
  • Agundez JA. Cytochrome P450 gene polymorphism and cancer. Curr Drug Metab 2004;5:211-24
  • Martinez C, Garcia-Martin E, Ladero JM, et al. Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis 2001;22:1323-6
  • Martinez C, Garcia-Martin E, Alonso-Navarro H, et al. Changes at the CYP2C locus and disruption of CYP2C8/9 linkage disequilibrium in patients with essential tremor. Neuromolecular Med 2007;9:195-204
  • Martinez C, Garcia-Martin E, Blanco G, et al. The effect of the cytochrome P450 CYP2C8 polymorphism on the disposition of (R)-ibuprofen enantiomer in healthy subjects. Br J Clin Pharmacol 2005;59:62-9
  • Yasar U, Lundgren S, Eliasson E, et al. Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms. Biochem Biophys Res Commun 2002;299:25-8
  • Hilli J, Rane A, Lundgren S, et al. Genetic polymorphism of cytochrome P450s and P-glycoprotein in the Finnish population. Fundam Clin Pharmacol 2007;21:379-86
  • Dreisbach AW, Japa S, Sigel A, et al. The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension. Am J Hypertens 2005;18:1276-81
  • Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001;11:597-607
  • Parikh S, Ouedraogo JB, Goldstein JA, et al. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther 2007;82(2):197-203
  • Totah RA, Rettie AE. Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther 2005;77:341-52
  • Garcia-Martin E, Pizarro RM, Martinez C, et al. Acquired resistance to the anticancer drug paclitaxel is associated with induction of cytochrome P450 2C8. Pharmacogenomics 2006;7:575-85
  • Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 2005;77:1-16
  • Daly AK, Aithal GP, Leathart JB, et al. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007;132:272-81
  • Blanco G, Martinez C, Ladero JM, et al. Interaction of CYP2C8 and CYP2C9 genotypes modifies the risk for nonsteroidal anti-inflammatory drugs-related acute gastrointestinal bleeding. Pharmacogenet Genomics 2008;18:37-43
  • Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med 2005;7:97-104
  • Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999;353:717-9
  • Agundez JA, Martinez C, Garcia-Martin E, et al. Cytochrome P450 CYP2C9 polymorphism and NSAID-related acute gastrointestinal bleeding. Gastroenterology 2007;133:2071-2
  • Martinez C, Blanco G, Ladero JM, et al. Genetic predisposition to acute gastrointestinal bleeding after NSAIDs use. Br J Pharmacol 2004
  • Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002;12:251-63
  • Tang C, Shou M, Rushmore TH, et al. In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: correlation with CYP2C9 genotype and in-vivo pharmacokinetics. Pharmacogenetics 2001;11:223-35
  • Kirchheiner J, Tsahuridu M, Jabrane W, et al. The CYP2C9 polymorphism: from enzyme kinetics to clinical dose recommendations. Personalized Med 2004;1:63-84
  • Brenner SS, Herrlinger C, Dilger K, et al. Influence of age and cytochrome P450 2C9 genotype on the steady-state disposition of diclofenac and celecoxib. Clin Pharmacokinet 2003;42:283-92
  • Kirchheiner J, Stormer E, Meisel C, et al. Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics 2003;13:473-80
  • Kusama M, Maeda K, Chiba K, et al. Prediction of the effects of genetic polymorphism on the pharmacokinetics of CYP2C9 substrates from in vitro data. Pharm Res 2009;26(4):822-35
  • Kirchheiner J, Meineke I, Steinbach N, et al. Pharmacokinetics of diclofenac and inhibition of cyclooxygenases 1 and 2: no relationship to the CYP2C9 genetic polymorphism in humans. Br J Clin Pharmacol 2003;55:51-61
  • Yasar U, Eliasson E, Forslund-Bergengren C, et al. The role of CYP2C9 genotype in the metabolism of diclofenac in vivo and in vitro. Eur J Clin Pharmacol 2001;57:729-35
  • Lee CR, Pieper JA, Frye RF, et al. Differences in flurbiprofen pharmacokinetics between CYP2C9*1/*1, *1/*2, and *1/*3 genotypes. Eur J Clin Pharmacol 2003;58:791-4
  • Kirchheiner J, Meineke I, Freytag G, et al. Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin Pharmacol Ther 2002;72:62-75
  • Takanashi K, Tainaka H, Kobayashi K, et al. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 2000;10:95-104
  • Vianna-Jorge R, Perini JA, Rondinelli E, et al. CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin Pharmacol Ther 2004;76:18-26
  • Xu HY, Zhong DF, Zhao LM, et al. Pharmacokinetics of meloxicam in healthy Chinese volunteers. Yao Xue Xue Bao 2001;36:71-3
  • Zarza J, Hermida J, Montes R, et al. Major bleeding during combined treatment with indomethacin and low doses of acenocoumarol in a homozygous patient for 2C9*3 variant of cytochrome p-450 CYP2C9. Thromb Haemost 2003;90:161-2
  • Vonkeman HE, van de Laar MA, van der Palen J, et al. Allele variants of the cytochrome P450 2C9 genotype in white subjects from The Netherlands with serious gastroduodenal ulcers attributable to the use of NSAIDs. Clin Ther 2006;28:1670-6
  • Pilotto A, Seripa D, Franceschi M, et al. Genetic susceptibility to NSAID-related gastroduodenal bleeding: Role of cytochrome P450 (CYP) 2C9 polymorphisms. Gastroenterology 2007;133:465-71
  • van Oijen MG, Laheij RJ. Impact of CYP2C9 genotype on pharmacokinetics: are all NSAIDs the same? Gastroenterology 2007;133:2073-4
  • Ma J, Yang XY, Qiao L, et al. CYP2C9 polymorphism in non-steroidal anti-inflammatory drugs-induced gastropathy. J Dig Dis 2008;9:79-83
  • Ford L, Kampanis P, Berg J. Thiopurine S-methyltransferase genotype-phenotype concordance: used as a quality assurance tool to help control the phenotype assay. Ann Clin Biochem 2009;46:152-4
  • Palmieri O, Latiano A, Bossa F, et al. Sequential evaluation of thiopurine methyltransferase, inosine triphosphate pyrophosphatase, and HPRT1 genes polymorphisms to explain thiopurines' toxicity and efficacy. Aliment Pharmacol Ther 2007;26:737-45
  • Nebert DW, Vesell ES. Can personalized drug therapy be achieved? A closer look at pharmaco-metabonomics. Trends Pharmacol Sci 2006;27:580-6
  • Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007;449:851-61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.