362
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part I: targeting p53, Mdm2, GADD153/CHOP, GRP78/BiP and heat shock proteins

, MSc (Med) PhD (Med) & , MSc (Med)
Pages 799-821 | Published online: 10 Jun 2009

Bibliography

  • Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005;569(1-2):29-63
  • Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005;115(10):2656-64
  • Yoshida H. ER stress and diseases. FEBS J 2007;274(3):630-58
  • Hampton R. ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 2002;14:476-82
  • Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 2006;13(3):363-73
  • Rao RV, Niazi K, Mollahan P, et al. Coupling endoplasmic reticulum stress to the cell-death program: a novel HSP90-independent role for the small chaperone protein p23. Cell Death Differ 2006;13(3):415-25
  • Todd DJ, Lee A-H, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 2008;8:663-74
  • Chaabane C, Corvazier E, Bredoux R, et al. Sarco/endoplasmic reticulum Ca2+ATPase type 3 isoforms (SERCA3b and SERCA3f): distinct roles in cell adhesion and ER stress. Biochem Biophys Res Commun 2006;345(4):1377-85
  • Aridor M. Visiting the ER: the endoplasmic reticulum as a target for therapeutics in traffic related diseases. Adv Drug Deliv Rev 2007;59(8):759-81
  • Rutkowski D, Kaufman R. A trip to the ER: coping with stress. Trends Cell Biol 2004;14:20-8
  • Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8(8):739-58
  • Kuhn DJ, Zeger EL, Orlowski RZ. Proteasome inhibitors and modulators of heat shock protein function. Updat Cancer Ther 2006;1(2):91-116
  • Nawrocki S, Sweeney-Gotsch B, Takamori R, McConkey D. The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 2004;3:59-70
  • Nawrocki ST, Carew JS, Pino MS, et al. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 2005;65(24):11658-66
  • Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 2003;100(17):9946-51
  • Rajkumar S, Richardson P, Hideshima T, Anderson K. Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 2005;23:630-9
  • Nencioni A, Grünebach F, Patrone F, et al. Proteasome inhibitors: antitumor effects and beyond. Leukemia 2007;21:30-6
  • Stapnes C, Døskeland AP, Hatfield K, et al. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol 2007;136:814-28
  • Leclerc D, Rozen R. Endoplasmic reticulum stress increases the expression of methylenetetrahydrofolate reductase through the IRE1 transducer. J Biol Chem 2008;283(6):3151-60
  • Zhang LJ, Li ZQ, Yang YP, et al. Tunicamycin suppresses cisplatin-induced HepG2 cell apoptosis via enhancing p53 protein nuclear export. Mol Cell Biochem 2009;327(1-2):171-82
  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007;8(7):519-29
  • Zhao L, Ackerman SL. Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 2006;18(4):444-52
  • Bicknell AA, Babour A, Federovitch CM, Niwa M. A novel role in cytokinesis reveals a housekeeping function for the unfolded protein response. J Cell Biol 2007;177(6):1017-27
  • Wu J, Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 2006;13(3):374-84
  • Citterio C, Vichi A, Pacheco-Rodriguez G, et al. Unfolded protein response and cell death after depletion of brefeldin A-inhibited guanine nucleotide-exchange protein GBF1. Proc Natl Acad Sci USA 2008;105(8):2877-82
  • Jentsch S, Rumpf S. Cdc48 (p97): a ‘molecular gearbox’ in the ubiquitin pathway? Trends Biochem Sci 2007;32(1):6-11
  • Lass A, McConnell E, Nowis D, et al. A novel function of VCP (valosin-containing protein; p97) in the control of N-glycosylation of proteins in the endoplasmic reticulum. Arch Biochem Biophys 2007;462(1):62-73
  • Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 2007;18(6):716-31
  • Yoshida H, Uemura A, Mori K. pXBP1(U), a negative regulator of the unfolded protein response activator pXBP1(S), targets ATF6 but not ATF4 in proteasome-mediated degradation. Cell Struct Funct 2009;34(1):1-10
  • Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 2007;67(8):3496-9
  • Misra UK, Deedwania R, Pizzo SV. Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 2006;281(19):13694-707
  • Meares GP, Zmijewska AA, Jope RS. HSP105 interacts with GRP78 and GSK3 and promotes ER stress-induced caspase-3 activation. Cell Signal 2008;20(2):347-58
  • Zhang F, Hamanaka RB, Bobrovnikova-Marjon E, et al. Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest. J Biol Chem 2006;281(40):30036-45
  • Bourdon J-C. p53 and its isoforms in cancer. Br J Cancer 2007;97:277-82
  • Concannon C, Koehler B, Reimertz C, et al. Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 2007;26:1681-92
  • Cuenin S, Tinel A, Janssens S, Tschopp J. p53-induced protein with a death domain (PIDD) isoforms differentially activate nuclear factor-kappaB and caspase-2 in response to genotoxic stress. Oncogene 2008;27(3):387-96
  • D'Arcy P, Maruwge W, Ryan BA, Brodin B. The oncoprotein SS18-SSX1 promotes p53 ubiquitination and degradation by enhancing HDM2 stability. Mol Cancer Res 2008;6(1):127-38
  • Ehrhardt H, Hacker S, Wittmann S, et al. Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells. Oncogene 2008;27(6):783-93
  • Hirano Y, Ronai ZE. A new function for p53 ubiquitination. Cell 2006;127(4):675-7
  • Gudkov AV. Cancer drug discovery: the wisdom of imprecision. Nat Med 2004;10:1298-9
  • Papazoglu C, Mills A. p53: At the crossroad between cancer and ageing. J Pathol 2007;211:124-33
  • Abdelrahim M, Newman K, Vanderlaag K, Samudio I. Safe S. 3,3′-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 2006;27(4):717-28
  • Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004;11(4):381-9
  • Woo KJ, Lee TJ, Lee SH, et al. Elevated gadd153/chop expression during resveratrol-induced apoptosis in human colon cancer cells. Biochem Pharmacol 2007;73(1):68-76
  • Pae HO, Jeong SO, Jeong GS, et al. Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells. Biochem Biophys Res Commun 2007;353(4):1040-5
  • Yokouchi M, Hiramatsu N, Hayakawa K, et al. Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response. Cell Death Differ 2007;14(8):1467-74
  • Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther 2005;4(2):e50-74
  • Anding AL, Chapman JS, Barnett DW, et al. The unhydrolyzable fenretinide analogue 4-hydroxybenzylretinone induces the proapoptotic genes GADD153 (CHOP) and Bcl-2-binding component 3 (PUMA) and apoptosis that is caspase-dependent and independent of the retinoic acid receptor. Cancer Res 2007;67(13):6270-7
  • Kardosh A, Golden EB, Pyrko P, et al. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res 2008;68(3):843-51
  • Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis: Multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 2006;281(11):7260-70
  • Pan MH, Lai YS, Lai CS, et al. 5-Hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone induces apoptosis through reactive oxygen species production, growth arrest and DNA damage-inducible gene 153 expression, and caspase activation in human leukemia cells. J Agric Food Chem 2007;55(13):5081-91
  • Bashir T, Pagano M. Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv Cancer Res 2003;88:101-44
  • Scheffner M, Whitaker N. Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system. Semin Cancer Biol 2003;13:59-67
  • Demarchi F, Brancolini C. Altering protein turnover in tumor cells: New opportunities for anti-cancer therapies. Drug Resist Updat 2005;8(6):359-68
  • Farras R, Bossis G, Andermarcher E, et al. Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy? Crit Rev Oncol Hematol 2005;54(1):31-51
  • Sakamoto KM. Ubiquitin-dependent proteolysis: its role in human diseases and the design of therapeutic strategies. Mol Genet Metab 2002;77(1-2):44-56
  • Voorhees PM, Orlowski RZ. The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 2006;46(1):189-213
  • Wiman KG. Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 2006;13(6):921-6
  • Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 2007;9(4):428-35
  • Puisieux A, Valsesia-Wittmann S, Ansieau S. A twist for survival and cancer progression. Br J Cancer 2006;94:13-7
  • Li J, Wang Y, Fan X, et al. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway. Biochem Biophys Res Commun 2007;363(4):895-900
  • Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007;8:275-83
  • Zhu Q, Wani G, Yao J, et al. The ubiquitin-proteasome system regulates p53-mediated transcription at p21waf1 promoter. Oncogene 2007;26(29):4199-208
  • Reimertz C, Kogel D, Rami A, et al. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 2003;162(4):587-97
  • Callus B, Vaux D. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 2007;14:73-8
  • Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin–proteasome system. Nat Rev Drug Discov 2006;5:596-613
  • Brooks C, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell 2006;21:307-15
  • Allende-Vega N, Saville MK, Meek DW. Transcription factor TAFII250 promotes Mdm2-dependent turnover of p53. Oncogene 2007;26:4234-42
  • Mani A, Gelmann E. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005;23:4776-89
  • Wallace VA. Second step to retinal tumours. Nature 2006;444:45-6
  • Ambrosini G, Sambol E, Carvajal D, et al. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 2007;26(24):3473-81
  • Nakayama K, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 2006;6:369-81
  • Marine JC, Francoz S, Maetens M, et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 2006;13(6):927-34
  • Paliwal S, Kovi RC, Nath B, et al. The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. Cancer Res 2007;67(19):9322-9
  • Chen D, Kon N, Li M, et al. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 2005;121(7):1071-83
  • Nam EJ, Kim YT. Alteration of cell-cycle regulation in epithelial ovarian cancer. Int J Gynecol Cancer 2008;18(6):1169-82
  • Park HY, Kim MK, Moon S-I, et al. Cell cycle arrest and apoptotic induction in LNCaP cells by MCS-C2, novel cyclin-dependent kinase inhibitor, through p53/p21WAF1/CIP1 pathway. Cancer Sci 2006;97(5):430-6
  • Kolomeichuk SN, Bene A, Upreti M, et al. Induction of apoptosis by vinblastine via c-Jun autoamplification and p53-independent down-regulation of p21WAF1/CIP1. Mol Pharmacol 2008;73(1):128-36
  • Giono LE, Manfredi JJ. Mdm2 is required for inhibition of Cdk2 activity by p21, thereby contributing to p53-dependent cell cycle arrest. Mol Cell Biol 2007;27(11):4166-78
  • Lamkanfi M, Festjens N, Declercq W, et al. Caspases in cell survival, proliferation and differentiation. Cell Death Differ 2007;14:44-55
  • Reimer C, Borras A, Kurdistani S, et al. Altered regulation of cyclin G in human breast cancer and its specific localization at replication foci in response to DNA damage in p53+/+ cells. J Biol Chem 1999;274:11022-9
  • Chin P, Momand J, Pfeifer G. In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation. Oncogene 1997;15:87-99
  • Brooks CL, Li M, Gu W. Mechanistic studies of MDM2-mediated ubiquitination in p53 regulation. J Biol Chem 2007;282(31):22804-15
  • Buchynska LG, Nesina IP, Kashuba EV. Different trends of p53, MDM2 and p14 ARF expression patterns in endometrial adenocarcinomas versus hyperplasia. Exp Oncol 2007;29(4):287-94
  • Dudkina AS, Lindsley CW. Small molecule protein-protein inhibitors for the p53-MDM2 interaction. Curr Top Med Chem 2007;7(10):952-60
  • Hasan MK, Yaguchi T, Harada JI, et al. CARF (collaborator of ARF) interacts with HDM2: evidence for a novel regulatory feedback regulation of CARF-p53-HDM2-p21WAF1 pathway. Int J Oncol 2008;32(3):663-71
  • Hu B, Gilkes DM, Farooqi B, et al. MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem 2006;281(44):33030-5
  • Ringshausen I, O'Shea CC, Finch AJ, et al. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 2006;10(6):501-14
  • Shmueli A, Oren M. Mdm2: p53′s Lifesaver? Mol Cell 2007;25(6):794-6
  • Fayolle C, Pourchet J, de Fromentel CC, et al. Gadd45a activation protects melanoma cells from ultraviolet B-induced apoptosis. J Invest Dermatol 2008;128(1):196-202
  • Benjamin CL, Ananthaswamy HN. p53 and the pathogenesis of skin cancer. Toxicol Appl Pharmacol 2007;224(3):241-8
  • Mallakin A, Sugiyama T, Taneja P, et al. Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell 2007;12(4):381-94
  • Miwa S, Uchida C, Kitagawa K, et al. Mdm2-mediated pRB downregulation is involved in carcinogenesis in a p53-independent manner. Biochem Biophys Res Commun 2006;340(1):54-61
  • Nakamura Y, Ozaki T, Niizuma H, et al. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line. Biochem Biophys Res Commun 2007;354(4):892-8
  • Park H-R, Won Jung W, Bertoni F, et al. Molecular analysis of p53, MDM2 and H-ras genes in low-grade central osteosarcoma. Pathol Res Pract 2004;200(6):439-45
  • Saporita AJ, Maggi LB Jr, Apicelli AJ, Weber JD. Therapeutic targets in the ARF tumor suppressor pathway. Curr Med Chem 2007;14(17):1815-27
  • Valentin-Vega YA, Barboza JA, Chau GP, et al. High levels of the p53 inhibitor MDM4 in head and neck squamous carcinomas. Hum Pathol 2007;38(10):1553-62
  • Wu YH, Tsai Chang JH, Cheng YW, et al. Xeroderma pigmentosum group C gene expression is predominantly regulated by promoter hypermethylation and contributes to p53 mutation in lung cancers. Oncogene 2007;26(33):4761-73
  • Bai M, Tsanou E, Skyrlas A, et al. Alterations of the p53, Rb and p27 tumor suppressor pathways in diffuse large B-cell lymphomas. Anticancer Res 2007;27(4B):2345-52
  • Albitar L, Carter MB, Davies S, Leslie KK. Consequences of the loss of p53, RB1, and PTEN: Relationship to gefitinib resistance in endometrial cancer. Gynecol Oncol 2007;106(1):94-104
  • Bossi G, Sacchi A. Restoration of wild-type p53 function in human cancer: relevance for tumor therapy. Head Neck 2007;29(3):272-84
  • Secchiero P, Zerbinati C, di Iasio MG, et al. Synergistic cytotoxic activity of recombinant TRAIL plus the non-genotoxic activator of the p53 pathway nutlin-3 in acute myeloid leukemia cells. Curr Drug Metab 2007;8(4):395-403
  • Bowman AL, Nikolovska-Coleska Z, Zhong H, et al. Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc 2007;129(42):12809-14
  • Levav-Cohen Y, Goldberg Z, Zuckerman V, et al. C-Abl as a modulator of p53. Biochem Biophys Res Commun 2005;331(3):737-49
  • Gasco M, Crook T. The p53 network in head and neck cancer. Oral Oncol 2003;39(3):222-31
  • Agrawal A, Yang J, Murphy RF, Agrawal DK. Regulation of the p14ARF-Mdm2-p53 pathway: an overview in breast cancer. Exp Mol Pathol 2006;81(2):115-22
  • Shikami M, Miwa H, Nishii K, et al. Low p53 expression of acute myelocytic leukemia cells with t(8;21) chromosome abnormality: association with low p14ARF expression. Leuk Res 2006;30(4):379-83
  • Bello MJ, Rey JA. The p53/Mdm2/p14ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer Genet Cytogenet 2006;164(2):172-3
  • Koivusalo R, Mialon A, Pitkanen H, et al. Activation of p53 in cervical cancer cells by human papillomavirus E6 RNA interference is transient, but can be sustained by inhibiting endogenous nuclear export-dependent p53 antagonists. Cancer Res 2006;66(24):11817-24
  • Fuster JJ, Sanz-González SM, Moll UM, Andrés V. Classic and novel roles of p53: Prospects for anticancer therapy. Trends Mol Med 2007;13(5):192-9
  • Li Y, He L, Bruce A, et al. p14ARF inhibits the growth of p53 deficient cells in a cell-specific manner. Biochim Biophys Acta Mol Cell Res 2006;1763(8):787-96
  • Bykov VJN, Selivanova G, Wiman KG. Small molecules that reactivate mutant p53. Eur J Cancer 2003;39(13):1828-34
  • Wiman KG, George FVW, George K. Restoration of wild-type p53 function in human tumors: Strategies for efficient cancer therapy. Adv Cancer Res 2007;97:321-38
  • Bon RS, Sprenkels NE, Koningstein MM, et al. Efficient C2 functionalisation of 2H-2-imidazolines. Org Biomol Chem 2008;6(1):130-7
  • Brummelkamp TR, Fabius AW, Mullenders J, et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2006;2(4):202-6
  • Klein C, Vassilev LT. Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 2004;91(8):1415-9
  • Beverly LJ, Felsher DW, Capobianco AJ. Suppression of p53 by Notch in lymphomagenesis: Implications for initiation and regression. Cancer Res 2005;65(16):7159-68
  • Buolamwini JK, Addo J, Kamath S, et al. Small molecule antagonists of the MDM2 oncoprotein as anticancer agents. Curr Cancer Drug Targets 2005;5(1):57-68
  • Vassilev LT. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 2004;3(4):419-21
  • Tovar C, Rosinski J, Filipovic Z, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy. Proc Natl Acad Sci USA 2006;103(6):1888-93
  • Aizu W, Belinsky GS, Flynn C, et al. Circumvention and reactivation of the p53 oncogene checkpoint in mouse colon tumors. Biochem Pharmacol 2006;72(8):981-91
  • Hu B, Gilkes DM, Chen J. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res 2007;67(18):8810-7
  • Laurie NA, Schin-Shih C, Dyer MA. Targeting MDM2 and MDMX in retinoblastoma. Curr Cancer Drug Targets 2007;7(7):689-95
  • Patton JT, Mayo LD, Singhi AD, et al. Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res 2006;66(6):3169-76
  • Barbieri E, Mehta P, Chen Z, et al. MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol Cancer Ther 2006;5(9):2358-65
  • Becker K, Marchenko ND, Maurice M, Moll UM. Hyperubiquitylation of wild-type p53 contributes to cytoplasmic sequestration in neuroblastoma. Cell Death Differ 2007;14(7):1350-60
  • Cao C, Shinohara ET, Subhawong TK, et al. Radiosensitization of lung cancer by nutlin, an inhibitor of murine double minute 2. Mol Cancer Ther 2006;5(2):411-7
  • Drakos E, Thomaides A, Medeiros LJ, et al. Inhibition of p53-murine double minute 2 interaction by nutlin-3A stabilizes p53 and induces cell cycle arrest and apoptosis in Hodgkin lymphoma. Clin Cancer Res 2007;13(11):3380-7
  • Hong S, Paulson QX, Johnson DG. E2F1 and E2F3 activate ATM through distinct mechanisms to promote E1A-induced apoptosis. Cell Cycle 2008;7(3):391-400
  • Kim K, Oh M, Ki H, et al. Identification of E2F1 as a positive transcriptional regulator for [delta]-catenin. Biochem Biophys Res Commun 2008;369(2):414-20
  • Sabah M, Cummins R, Leader M, Kay E. Altered expression of cell cycle regulatory proteins in gastrointestinal stromal tumors: Markers with potential prognostic implications. Hum Pathol 2006;37(6):648-55
  • Stanelle J, Pützer BM. E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med 2006;12(4):177-85
  • Zhang Z, Wang H, Li M, et al. Novel MDM2 p53-independent functions identified through RNA silencing technologies. Ann NY Acad Sci 2005;1058:205-14
  • Racek T, Buhlmann S, Rust F, et al. Transcriptional repression of the prosurvival endoplasmic reticulum chaperone GRP78/BIP by E2F1. J Biol Chem 2008;283(49):34305-14
  • Mayer RJ, Fujita J. Gankyrin, the 26 S proteasome, the cell cycle and cancer. Biochem Soc Trans 2006;34(5):746-8
  • Cheok CF, Dey A, Lane DP. Cyclin-dependent kinase inhibitors sensitize tumor cells to nutlin-induced apoptosis: a potent drug combination. Mol Cancer Res 2007;5(11):1133-45
  • Ribas J, Boix J, Meijer L. (R)-roscovitine (CYC202, Seliciclib) sensitizes SH-SY5Y neuroblastoma cells to nutlin-3-induced apoptosis. Exp Cell Res 2006;312(12):2394-400
  • Dey A, Wong ET, Bist P, et al. Nutlin-3 inhibits the NFkappaB pathway in a p53-dependent manner: Implications in lung cancer therapy. Cell Cycle 2007;6(17):2178-85
  • Graat HC, Carette JE, Schagen FH, et al. Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol Cancer Ther 2007;6(5):1552-61
  • Shimada H, Matsubara H, Shiratori T, et al. Phase I/II adenoviral p53 gene therapy for chemoradiation resistant advanced esophageal squamous cell carcinoma. Cancer Sci 2006;97(6):554-61
  • Kojima K, Konopleva M, Samudio IJ, et al. Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle 2006;5(23):2778-86
  • Muller CR, Paulsen EB, Noordhuis P, et al. Potential for treatment of liposarcomas with the MDM2 antagonist nutlin-3a. Int J Cancer 2007;121(1):199-205
  • Logan IR, McNeill HV, Cook S, et al. Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells. Prostate 2007;67(8):900-6
  • Secchiero P, Corallini F, Gonelli A, et al. Antiangiogenic activity of the MDM2 antagonist nutlin-3. Circ Res 2007;100(1):61-9
  • Secchiero P, Zerbinati C, Melloni E, et al. The MDM-2 antagonist nutlin-3 promotes the maturation of acute myeloid leukemic blasts. Neoplasia 2007;9(10):853-61
  • Stuhmer T, Chatterjee M, Hildebrandt M, et al. Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood 2005;106(10):3609-17
  • Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 2007;35(Pt 1):12-17
  • Xu H, Ju D, Jarois T, Xie Y. Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Res Treat 2008;107(2):267-74
  • Rutkowski DT, Kaufman RJ. That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 2007;32(10):469-76
  • Menendez-Benito V, Verhoef LGGC, Masucci MG, Dantuma NP. Endoplasmic reticulum stress compromises the ubiquitin–proteasome system. Hum Mol Genet 2005;14(19):2787-99
  • Yeh TC, Chiang PC, Li TK, et al. Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochem Pharmacol 2007;73(6):782-92
  • Barone MV, Crozat A, Tabaee A, et al. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev 1994;8(4):453-64
  • Amundson SA, Zhan Q, Penn LZ, Fornace AJ. Myc suppresses induction of the growth arrest genes gadd34, gadd45, and gadd153 by DNA-damaging agents. Oncogene 1998;17(17):2149-54
  • Barsyte-Lovejoy D, Mao DY, Penn LZ. c-Myc represses the proximal promoters of GADD45a and GADD153 by a post-RNA polymerase II recruitment mechanism. Oncogene 2004;23(19):3481-6
  • Chen C, Nussenzweig A, Guo M, et al. Down-regulation of gadd153 by c-myc in rat fibroblasts and its effect on cell growth and radiation-induced apoptosis. Oncogene 1996;13(8):1659-65
  • Corazzari M, Lovat PE, Oliverio S, et al. Growth and DNA damage-inducible transcription factor 153 mediates apoptosis in response to fenretinide but not synergy between fenretinide and chemotherapeutic drugs in neuroblastoma. Mol Pharmacol 2003;64(6):1370-8
  • Corazzari M, Lovat PE, Oliverio S, et al. Fenretinide: a p53-independent way to kill cancer cells. Biochem Biophys Res Commun 2005;331(3):810-5
  • Corazzari M, Lovat PE, Armstrong JL, et al. Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis: the role of stress proteins ERdj5 and ERp57. Br J Cancer 2007;96(7):1062-71
  • Reed JC. Drug Insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat Clin Pract Oncol 2006;3(7):388-98
  • He Q, Luo X, Jin W, et al. Celecoxib and a novel COX-2 inhibitor ON09310 upregulate death receptor 5 expression via GADD153/CHOP. Oncogene 2008;27(18):2656-60
  • Kim SH, Hwang CI, Juhnn YS, et al. GADD153 mediates celecoxib-induced apoptosis in cervical cancer cells. Carcinogenesis 2007;28(1):223-31
  • Rahmani M, Davis E, Crabtree T, et al. The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 2007;27(15):5499-513
  • Hetschko H, Voss V, Seifert V, et al. Upregulation of DR5 by proteasome inhibitors potently sensitizes glioma cells to TRAIL-induced apoptosis. FEBS J 2008;275(8):1925-36
  • Akatsu Y, Saikawa Y, Kubota T, et al. Predictive value of GADD153, p21 and c-Jun for chemotherapy response in gastric cancer. Cancer Sci 2007;98(5):707-15
  • Cudna RE, Dickson AJ. Engineering responsiveness to cell culture stresses: growth arrest and DNA damage gene 153 (GADD153) and the unfolded protein response (UPR) in NS0 myeloma cells. Biotechnol Bioeng 2006;94(3):514-21
  • Shani G, Fischer WH, Justice NJ, et al. GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol 2008;28(2):666-77
  • Daneshmand S, Quek ML, Lin E, et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol 2007;38(10):1547-52
  • Shang J. Quantitative measurement of events in the mammalian unfolded protein response. Methods 2005;35(4):390-4
  • Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 2006;6(1):45-54
  • Pyrko P, Schonthal AH, Hofman FM, et al. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 2007;67(20):9809-16
  • Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 2006;66(3):1702-11
  • Lee E, Nichols P, Spicer D, et al. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res 2006;66(16):7849-53
  • Davidson DJ, Haskell C, Majest S, et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 2005;65(11):4663-72
  • Bruning A, Burger P, Vogel M, et al. Nelfinavir induces the unfolded protein response in ovarian cancer cells, resulting in ER vacuolization, cell cycle retardation and apoptosis. Cancer Biol Ther 2009;8(3):226-32
  • Chiang PC, Hsu JL, Yeh TC, et al. Elucidation of susceptible factors to endoplasmic reticulum stress-mediated anticancer activity in human hepatocellular carcinoma. Naunyn Schmiedebergs Arch Pharmacol 2008;377(2):167-77
  • Chiu CC, Lin CY, Lee LY, et al. Glucose-regulated protein 78 regulates multiple malignant phenotypes in head and neck cancer and may serve as a molecular target of therapeutic intervention. Mol Cancer Ther 2008;7(9):2788-97
  • Gupta P, Walter MR, Su ZZ, et al. BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Cancer Res 2006;66(16):8182-91
  • Langer R, Feith M, Siewert JR, et al. Expression and clinical significance of glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus. BMC Cancer 2008;8:70
  • Rauschert N, Brandlein S, Holzinger E, et al. A new tumor-specific variant of GRP78 as target for antibody-based therapy. Lab Invest 2008;88(4):375-86
  • Schewe DM, Aguirre-Ghiso JA. Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 2009;69(4):1545-52
  • Wang Y, Wang W, Wang S, et al. Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells. BMC Cancer 2008;8:372
  • Wang HQ, Du ZX, Zhang HY, Gao DX. Different induction of GRP78 and CHOP as a predictor of sensitivity to proteasome inhibitors in thyroid cancer cells. Endocrinology 2007;148(7):3258-70
  • Yoneda Y, Steiniger SC, Capkova K, et al. A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorg Med Chem Lett 2008;18(5):1632-6
  • Schmitt E, Gehrmann M, Brunet M, et al. Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. J Leukoc Biol 2007;81(1):15-27
  • Burger AM. Highlights in experimental therapeutics. Cancer Lett 2007;245(1-2):11-21
  • O'Callaghan-Sunol C, Gabai VL, Sherman MY. Hsp27 modulates p53 signaling and suppresses cellular senescence. Cancer Res 2007;67(24):11779-88
  • Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy, a comprehensive review. Pharmacol Ther 2004;101:227-57
  • Kuhn DJ, Zeger EL, Orlowskia RZ. Proteasome inhibitors and modulators of heat shock protein function. Update Cancer Ther 2006;1:91-116
  • Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 2005;35:2518-27
  • Workman P, Powers MV. Chaperoning cell death: a critical dual role for Hsp90 in small-cell lung cancer. Nat Chem Biol 2007;3(8):455-7
  • Collins I, Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol 2006;2(12):689-700
  • Rodina A, Vilenchik M, Moulick K, et al. Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat Chem Biol 2007;3(8):498-507
  • Yaglom JA, Gabai VL, Sherman MY. High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res 2007;67(5):2373-81
  • Zhang HG, Wang J, Yang X, et al. Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 2004;23(11):2009-15
  • Ghosh JC, Dohi T, Kang BH, Altieri DC. Hsp60 regulation of tumor cell apoptosis. J Biol Chem 2008;283(8):5188-94
  • Aloy MT, Hadchity E, Bionda C, et al. Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells. Int J Radiat Oncol Biol Phys 2008;70(2):543-53
  • Isaacs JS, Xu W, Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003;3:213-7
  • Workman P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 2004;10:47-51
  • Sharp S, Workman P, George F. Vande woude aGK. Inhibitors of the Hsp90 molecular chaperone: current status. Adv Cancer Res 2006;95:323-48
  • Burger AM, Fiebig HH, Stinson SF, Sausville EA. 17-(Allylamino)-17-demethoxy-geldanamycin activity in human melanoma models. Anticancer Drugs 2004;15:377-87
  • Smith V, Sausville EA, Camalier RF, et al. Comparison of 17-dimethylamino ethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demeth oxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother Pharmacol 2005;56:126-37
  • Grem JL, Morrison G, Guo XD, et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxy-geldanamycin in adult patients with solid tumours. J Clin Oncol 2005;23:1885-93
  • Banerji U, O'Donnell A, Scurr M, et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 2005;23:4152-61
  • George P, Bali P, Annavarapu S, et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 2005;105(4):1768-76
  • Dong D, Ni M, Li J, et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 2008;68(2):498-505
  • Banhegyi G, Baumeister P, Benedetti A, et al. Endoplasmic reticulum stress. Ann NY Acad Sci 2007;1113:58-71
  • Lee HK, Xiang C, Cazacu S, et al. GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis. Neuro Oncol 2008;10(3):236-43
  • Gonzalez-Gronow M, Cuchacovich M, Llanos C, et al. Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res 2006;66(23):11424-31
  • Eccles SA, Massey A, Raynaud FI, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 2008;68(8):2850-60
  • Yan M, Shen J, Person MD, et al. Endoplasmic reticulum stress and unfolded protein response in Atm-deficient thymocytes and thymic lymphoma cells are attributable to oxidative stress. Neoplasia 2008;10(2):160-7
  • Cho HY, Thomas S, Golden EB, et al. Enhanced killing of chemo-resistant breast cancer cells via controlled aggravation of ER stress. Cancer Lett 2009; In Press, Corrected Proof, doi:10.1016/j.canlet.2009.03.007
  • Boelens J, Lust S, Offner F, et al. Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 2007;21(2):215-26
  • Klee M, Pallauf K, Alcala S, et al. Mitochondrial apoptosis induced by BH3-only molecules in the exclusive presence of endoplasmic reticular Bak. EMBO J 2009; advanced online publication, http://dx.doi.org/10.1038/emboj.2009.90
  • Kadara H, Lacroix L, Lotan D, Lotan R. Induction of endoplasmic reticulum stress by the pro-apoptotic retinoid N-(4-hydroxyphenyl)retinamide via a reactive oxygen species-dependent mechanism in human head and neck cancer cells. Cancer Biol Ther 2007;6(5):705-11
  • Drogat B, Auguste P, Nguyen DT, et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res 2007;67(14):6700-7
  • So AY, de la Fuente E, Walter P, et al. The unfolded protein response during prostate cancer development. Cancer Metastasis Rev 2009;28(1-2):219-23
  • Tanimura A, Yujiri T, Tanaka Y, et al. The anti-apoptotic role of the unfolded protein response in Bcr-Abl-positive leukemia cells. Leuk Res 2009;33(7):924-8
  • Chiang P, Hsu J, Yeh T, et al. Elucidation of susceptible factors to endoplasmic reticulum stress-mediated anticancer activity in human hepatocellular carcinoma. Naunyn Schmiedebergs Arch Pharmacol 2008;377(2):167-77
  • Shuda M, Kondoh N, Imazeki N, et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 2003;38(5):605-14
  • Zhang LJ, Chen S, Wu P, et al. Inhibition of MEK blocks GRP78 up-regulation and enhances apoptosis induced by ER stress in gastric cancer cells. Cancer Lett 2009;274(1):40-6
  • Zheng HC, Takahashi H, Li XH, et al. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum Pathol 2008;39(7):1042-9
  • Blais JD, Addison CL, Edge R, et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 2006;26(24):9517-32
  • Fels DR, Koumenis C. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther 2006;5(7):723-8
  • Hamanaka RB, Bobrovnikova-Marjon E, Ji X, et al. PERK-dependent regulation of IAP translation during ER stress. Oncogene 2009;28(6):910-20
  • Koumenis C, Bi M, Ye J, et al. Hypoxia and the unfolded protein response. Methods Enzymol 2007;435:275-93
  • Koumenis C, Wouters BG. “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res 2006;4(7):423-36
  • Koong AC, Chauhan V, Romero-Ramirez L. Targeting XBP-1 as a novel anti-cancer strategy. Cancer Biol Ther 2006;5(7):756-9
  • Liu Y, Adachi M, Zhao S, et al. Preventing oxidative stress: a new role for XBP1. Cell Death Differ 2009;16(6):847-57
  • Carrasco DR, Sukhdeo K, Protopopova M, et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 2007;11(4):349-60
  • Lisbona F, Rojas-Rivera D, Thielen P, et al. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha. Mol Cell 2009;33(6):679-91
  • Kawamura T, Tashiro E, Shindo K, Imoto M. SAR study of a novel triene-ansamycin group compound, quinotrierixin, and related compounds, as inhibitors of ER stress-induced XBP1 activation. J Antibiot (Tokyo) 2008;61(5):312-7
  • Han D, Upton JP, Hagen A, et al. A kinase inhibitor activates the IRE1alpha RNase to confer cytoprotection against ER stress. Biochem Biophys Res Commun 2008;365(4):777-83
  • Davenport EL, Morgan GJ, Davies FE. Untangling the unfolded protein response. Cell Cycle 2008;7(7):865-9
  • Li J, Ni M, Lee B, et al. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 2008;15(9):1460-71
  • Park HR, Tomida A, Sato S, et al. Effect on tumor cells of blocking survival response to glucose deprivation. J Natl Cancer Inst 2004;96(17):1300-10
  • Arap MA, Lahdenranta J, Mintz PJ, et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 2004;6(3):275-84
  • Denmeade SR, Isaacs JT. The SERCA pump as a therapeutic target: Making a “smart bomb” for prostate cancer. Cancer Biol Ther 2005;4(1):14-22
  • Deniaud A, Sharaf el dein O, Maillier E, et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 2008;27(3):285-99
  • Griffin JB, Rodriguez-Melendez R, Dode L, et al. Biotin supplementation decreases the expression of the SERCA3 gene (ATP2A3) in Jurkat cells, thus, triggering unfolded protein response. J Nutr Biochem 2006;17(4):272-81
  • Wu Y, Fabritius M, Ip C. Chemotherapeutic sensitization by endoplasmic reticulum stress: Increasing the efficacy of taxane against prostate cancer. Cancer Biol Ther 2009;8(2):146-52
  • Fribley A, Wang C-Y. Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther 2006;5(7):745-8
  • Nair S, Xu C, Shen G, et al. Toxicogenomics of endoplasmic reticulum stress inducer tunicamycin in the small intestine and liver of Nrf2 knockout and C57BL/6J mice. Toxicol Lett 2007;168(1):21-39
  • Sun GD, Kobayashi T, Abe M, et al. The endoplasmic reticulum stress-inducible protein niban regulates eIF2[alpha] and S6K1/4E-BP1 phosphorylation. Biochem Biophys Res Commun 2007;360(1):181-7
  • Leleu X, Xu L, Jia X, et al. Endoplasmic reticulum stress is a target for therapy in Waldenstrom macroglobulinemia. Blood 2009;113(3):626-34
  • Ledoux S, Yang R, Friedlander G, Laouari D. Glucose depletion enhances P-glycoprotein expression in hepatoma cells: Role of endoplasmic reticulum stress response. Cancer Res 2003;63(21):7284-90
  • Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes Dev 1999;13:1211-33
  • Sun S, Han J, Ralph WM, et al. Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress Chaperones 2004;9(1):76-87
  • Sasaya H, Utsumi T, Shimoke K, et al. Nicotine suppresses tunicamycin-induced, but not thapsigargin-induced, expression of GRP78 during ER stress-mediated apoptosis in PC12 cells. J Biochem 2008;144(2):251-7
  • Jorgensen E, Stinson A, Shan L, et al. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer 2008;8:229
  • Hengstermann A, Muller T. Endoplasmic reticulum stress induced by aqueous extracts of cigarette smoke in 3T3 cells activates the unfolded-protein response-dependent PERK pathway of cell survival. Free Radic Biol Med 2008;44(6):1097-107
  • Maaser K, Sutter AP, Krahn A, et al. Cell cycle-related signaling pathways modulated by peripheral benzodiazepine receptor ligands in colorectal cancer cells. Biochem Biophys Res Commun 2004;324(2):878-86
  • Kim I, Shu CW, Xu W, et al. Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. J Biol Chem 2009;284(3):1593-603
  • Corazzari M, Lovat PE, Armstrong JL, et al. Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis: the role of stress proteins ERdj5 and ERp57. Br J Cancer 2007;96(7):1062-71
  • Mao W, Iwai C, Keng PC, et al. Norepinephrine-induced oxidative stress causes PC-12 cell apoptosis by both endoplasmic reticulum stress and mitochondrial intrinsic pathway: inhibition of phosphatidylinositol 3-kinase survival pathway. Am J Physiol Cell Physiol 2006;290(5):C1373-84
  • Miyata Y, Fukuhara A, Matsuda M, et al. Insulin induces chaperone and CHOP gene expressions in adipocytes. Biochem Biophys Res Commun 2008;365(4):826-32
  • Novosyadlyy R, Kurshan N, Lann D, et al. Insulin-like growth factor-I protects cells from ER stress-induced apoptosis via enhancement of the adaptive capacity of endoplasmic reticulum. Cell Death Differ 2008;15(8):1304-17
  • Okamura M, Takano Y, Hiramatsu N, et al. Suppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response. Am J Physiol Renal Physiol 2008;295(5):F1495-503
  • Yamazaki T, Muramoto M, Oe T, et al. Diclofenac, a non-steroidal anti-inflammatory drug, suppresses apoptosis induced by endoplasmic reticulum stresses by inhibiting caspase signaling. Neuropharmacology 2006;50(5):558-67
  • Prince HM, Adena M, Smith DK, Hertel J. Efficacy of single-agent bortezomib vs. single-agent thalidomide in patients with relapsed or refractory multiple myeloma: a systematic comparison. Eur J Haematol 2007;79(2):93-9
  • Terpos E, Sezer O, Croucher P, Dimopoulos M-A. Myeloma bone disease and proteasome inhibition therapies. Blood 2007;110(4):1098-104
  • Fels DR, Ye J, Segan AT, et al. Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. Cancer Res 2008;68(22):9323-30
  • Fenteany G, Standaert R, Lane W, et al. Inhibition of proteasome activities and subunitspecific amino-terminal threonine modification by lactacystin. Science 1995;268:726-31
  • Li X, Yang D, Li L, et al. Proteasome inhibitor lactacystin disturbs the intracellular calcium homeostasis of dopamine neurons in ventral mesencephalic cultures. Neurochem Int 2007;50(7-8):959-65
  • Meng L, Mohan R, Kwok B, et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 1999;96:10403-8
  • Roy B, Lee A. The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res 1999;27(6):1437-43
  • Drummond I, Lee A, Resendez E, Steinhardt R. Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts. J Biol Chem 1987;262:12081-5
  • Li W, Alexander S, Cao X, Lee A. Transactivation of the grp78 promoter by Ca2+- depletion. A comparative analysis with A23187 and the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. J Biol Chem 1993;268:12003-9
  • Lee DI, Sumbilla C, Lee M, et al. Mechanisms of resistance and adaptation to thapsigargin in androgen-independent prostate cancer PC3 and DU145 cells. Arch Biochem Biophys 2007;464(1):19-27
  • Caspersen C, Pedersen PS, Treiman M. The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J Biol Chem 2000;275(29):22363-72
  • Wang Q, Zhang H, Zhao B, Fei H. IL-1beta caused pancreatic beta-cells apoptosis is mediated in part by endoplasmic reticulum stress via the induction of endoplasmic reticulum Ca(2+) release through the c-Jun N-terminal kinase pathway. Mol Cell Biochem 2009;324(1-2):183-90
  • Patterson J, Palombella VJ, Fritz C, Normant E. IPI-504, a novel and soluble HSP-90 inhibitor, blocks the unfolded protein response in multiple myeloma cells. Cancer Chemother Pharmacol 2008;61(6):923-32
  • Liu E, Ou J, Lee A. Brefeldin A as a regulator of grp78 gene expression in mammalian cells. J Biol Chem 1992;267:7128-33
  • Brostrom M, Prostko C, Gmitter D, Brostrom C. Independent signaling of grp78 gene transcription and phosphorylation of eukaryotic initiator factor 2 alpha by the stressed endoplasmic reticulum. J Biol Chem 1995;270:4127-32
  • Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003;11(3):619-33
  • Toyokuni S, Akatsuka S. Pathological investigation of oxidative stress in the post-genomic era. Pathol Int 2007;57:461-73
  • Pi J, Zhang Q, Woods CG, et al. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid. Toxicol Appl Pharmacol 2008;226(3):236-43
  • Wang X-J, Sun Z, Chen W, et al. Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction. Toxicol Appl Pharmacol 2008;230(3):383-9
  • Janssen-Heininger YMW, Mossman BT, Heintz NH, et al. Redox-based regulation of signal transduction: Principles, pitfalls, and promises. Free Radic Biol Med 2008;45(1):1-17
  • Min SK, Lee SK, Park JS, et al. Endoplasmic reticulum stress is involved in hydrogen peroxide induced apoptosis in immortalized and malignant human oral keratinocytes. J Oral Pathol Med 2008;37(8):490-8
  • Xu W, Liu L, Charles IG, Moncada S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 2004;6(11):1129-34
  • Nencioni A, Grunebach F, Patrone F, et al. Proteasome inhibitors: antitumor effects and beyond. Leukemia 2007;21(1):30-6
  • Podar K, Gouill SL, Zhang J, et al. A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene 2008;27(6):721-31
  • Jiang CC, Lucas K, Avery-Kiejda KA, et al. Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress. Cancer Res 2008;68(16):6708-17
  • Uramoto H, Sugio K, Oyama T, et al. Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer 2005;49(1):55-62
  • Wang J, Hua H, Ran Y, et al. Derlin-1 is overexpressed in human breast carcinoma and protects cancer cells from endoplasmic reticulum stress-induced apoptosis. Breast Cancer Res 2008;10:R7
  • Davis J, Kakar M, Lim C. Controlling protein compartmentalization to overcome disease. Pharm Res 2007;24(1):17-27
  • Ozcan U, Ozcan L, Yilmaz E, et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 2008;29(5):541-51
  • Chen C, Kouroukis CT, White D, et al. Bortezomib in relapsed or refractory Waldenstrom's cacroglobulinemia. Clin Lymphoma Myeloma 2009;9(1):74-6
  • Zeldis JB, Schafer PH, Bennett BL, et al. Potential new therapeutics for Waldenstrom's macroglobulinemia. Semin Oncol 2003;30(2):275-81

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.