110
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Applications of fiber-optics-based nanosensors to drug discovery

, , , &
Pages 889-900 | Published online: 22 Jul 2009

Bibliography

  • Vo-Dinh T, Tromberg BJ, Griffin GD, et al. Antibody-based fiberoptics biosensor for the carcinogen Benzo(a)Pyrene. Appl Spectrosc 1987;41:735-8
  • Tromberg BJ, Sepaniak MJ, Alarie JP, et al. Development of antibody-based fiber-optic sensors for detection of a Benzo[a]Pyrene metabolite. Anal Chem 1988;60:1901-8
  • Alarie JP, Bowyer JR, Sepaniak MJ, et al. Fluorescence monitoring of a Benzo[a]Pyrene metabolite using a regenerable immunochemical-based fiberoptic sensor. Anal Chim Acta 1990;236:237-44
  • Alarie JP, Sepaniak MJ, Vo-Dinh T. Evaluation of antibody immobilization techniques for fiber optic-based fluoroimmunosensing. Anal Chim Acta 1990;229:169-76
  • Alarie JP, Vo-Dinh T. A fiberoptic cyclodextrin-based sensor. Talanta 1991;38:529-34
  • Bowyer JR, Alarie JP, Sepaniak MJ, et al. Construction and evaluation of a regenerable fluoroimmunochemical-based fiber optic biosensor. Analyst 1991;116:117-22
  • Vo-Dinh T, Griffin GD, Sepaniak MJ. In: Wolfbeis OS, editor, Fiber optic chemical sensors and biosensors. Boca Raton: CRC Press, 1991
  • Vo-Dinh T, Sepaniak MJ, Griffin GD, et al. Immunosensors: principles and applications. Immunomethods 1993;3:85-92
  • Alarie JP, VoDinh T. Antibody-based submicron biosensor for benzo[a]pyrene DNA adduct. Polycyclic Aromat Compd 1996;8:45-52
  • Betzig E, Chichester RJ. Single molecules observed by near-field scanning optical microscopy. Science 1993;262:1422-5
  • Pohl DW. In: Sheppard CJR, Mulevy T, editors, Advances in Optical and Electron Microscopy. London: Academic, 1991
  • Deckert V, Zeisel D, Zenobi R, et al. Near-field surface enhanced Raman imaging of dye-labeled DNA with 100-nm resolution. Anal Chem 1998;70:2646-50
  • Zeisel D, Deckert V, Zenobi R, et al. Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem Phys Lett 1998;283:381-5
  • Tan WH, Shi ZY, Kopelman R. Development of submicron chemical fiber optic sensors. Anal Chem 1992;64:2985-90
  • Tan WH, Shi ZY, Smith S, et al. Submicrometer intracellular chemical optical fiber sensors. Science 1992;258:778-81
  • Cullum BM, Griffin GD, Miller GH, et al. Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem 2000;277:25-32
  • Cullum BM, Vo-Dinh T. The development of optical nanosensors for biological measurements. Trends Biotechnol 2000;18:388-93
  • Vo-Dinh T, Alarie JP, Cullum BM, et al. Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nat Biotechnol 2000;18:764-7
  • Vo-Dinh T, Cullum B. Biosensors and biochips: advances in biological and medical diagnostics. Fresenius'. J Anal Chem 2000;366:540-51
  • Vo-Dinh T, Griffin GD, Alarie JP, et al. Development of nanosensors and bioprobes. J Nanoparticle Res 2000;2:17-27
  • Vo-Dinh T, Cullum BM, Stokes DL. Nanosensors and biochips: frontiers in biomolecular diagnostics. Sens Actuators B 2001;74:2-11
  • Kasili PM, Cullum BM, Griffin GD, Vo-Dinh T. Nanosensor for in-vivo measurement of the carcinogen Benzo [a] Pyrene in a single cell. J Nanosci Nanotechnol 2002;6:653-8
  • Kasili P, Vo-Dinh T. Detection of polycyclic aromatic compounds in single living cells using optical nanoprobes. Polycyclic Aromat Compd 2004;24:221-35
  • Kasili PM, Song JM, Vo-Dinh T. Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc 2004;126:2799-806
  • Song JM, Kasili PM, Griffin GD, Vo-Dinh T. Detection of cytochrome c in a single cell using an optical nanobiosensor. Anal Chem 2004;76:2591-4
  • Kasili PM, Vo-Dinh T. Optical nanobiosensor for monitoring an apoptotic signaling process in a single living cell following photodynamic therapy. J Nanosci Nanotechnol 2006;5:2057-62
  • Vo-Dinh T, Kasili PM. Nanobiosensors for single-cell monitoring. Anal Biochem Chem 2005;382:918-25
  • Vo-Dinh T, Kasili PM, Wabuyele MB. Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomed 2006;2:22-30
  • Vo-Dinh T. Fiberoptics nanosensing at the single cell level. Spectrochimia Acta B 2008;63:95-103
  • Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC. Trends Anal Chem 1998;17:557-82
  • Turner DR. Etch procedure for optical fibers. 4469554; 1984
  • Hoffmann P, Dutoit B, Salathe RP. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips. Ultramicroscopy 1995;61:165-70
  • Lambelet P, Sayah A, Pfeffer M, et al. Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips. Appl Opt 1998;37:7289-92
  • Stockle R, Fokas C, Deckert V, et al. High-quality near-field optical probes by tube etching. Appl Phys Lett 1999;75:160-2
  • Holland L. Vacuum deposition of thin films. New York: Wiley, 1956
  • Dhawan A, Muth JF, Leonard DN, et al. Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications. J Vac Sci Technol B Microelectron Nanometer Struct 2008;26:2168-73
  • Wolf B, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 1999;274:20049-52
  • Hengartner MO. Apoptosis: DNA destroyers. Nature 2001;412:27-9
  • Ricci JE, Gottlieb RA, Green DR. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 2003;160:65-75
  • Kasili PM, Vo-Dinh T. Optical nanobiosensor for monitoring an apoptotic signaling process in a single living cell following photodynamic therapy. J Nanosci Nanotech 2005;5:2057-62
  • Ni J, Lipert RJ, Dawson GB, Porter MD. Immunoassay readout method using extrinsic raman labels adsorbed on immunogold colloids. Anal Chem 1999;71:4903-8
  • Mulvaney SP, Musick MD, Keating CD, Natan MJ. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 2003;19:4784-90
  • Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman Spectroscopic fingerprints for DNA and RNA detection. Science 2002;197:1536-40
  • Cao YC, Jin R, Nam J, et al. Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc 2003;125:14676-7
  • Isola N, Stokes DL, Vo-Dinh T. Surface-enhanced Raman gene probes for HIV detection. Anal Chem 1998;70:1352-6
  • Wabuyele MB, Vo-Dinh T. Detection of HIV type 1 DNA sequence using plasmonics nanoprobes. Anal Chem 2005;77:7810-5
  • Vo-Dinh T, Allain LR, Stokes DL. Cancer gene detection using surface-enhanced Raman scattering (SERS). J Raman Spectrosc 2002;33:511-6
  • Michota A, Bukowska J. Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 2003;34:21-5
  • Grubisha DS, Lipert RJ, Park HY, et al. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 2003;75:5936-43
  • Xu S, Ji X, Xu W, et al. Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst 2004;129:63-8
  • Talley CE, Jusinski L, Hollars CW, et al. Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem 2004;76:7064-8
  • Ji XH, Xu SP, Wang LY, et al. Immunoassay using the probe-labeled Au/Ag core-shell nanoparticles based on surface-enhanced Raman scattering. Colloids Surf A 2005;257-258:171-5
  • Schwartzberg AM, Oshiro TY, Zhang JZ, et al. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles. Anal Chem 2006;78:4732-6
  • Niidome T, Yamagata M, Okamoto Y, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Controlled Release 2006;114:343-7
  • Kneipp J, Kneipp H, Wittig B, Kneipp K. One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 2007;7:2819-23
  • Sun L, Yu C, Irudayaraj J. Surface enhanced raman scattering based nonfluorescent probes for multiplex DNA detection. Anal Chem 2007;79:3981-8
  • Lee S, Kim S, Choo J, et al. Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy. Anal Chem 2007;79:916-22
  • Qian X, Peng XH, Ansari DO, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 2008;26:83-90
  • Wang H-S, Vo-Dinh T. Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 2009;20:065101
  • Chawla JS, Amiji MM. Cellular uptake and concentrations of Tamoxifen upon administration in poly(_-caprolactone) nanoparticles. AAPS Pharm Sci 2003;5:Article 3
  • Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006;6:662-8
  • Becker C, Hodenius M, Blendinger G, et al. Uptake of magnetic nanoparticles into cells for cell tracking. J Magn Magn Mater 2007;311:234-7
  • Shamsaie A, Jonczyk M, Sturgis J, et al. Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes. J Biomed Optics 2007;12:020502
  • Scaffidi J, Gregas MK, Seewaldt V, Vo-Dinh T. SERS-based plasmonic nanobiosensing in single living cells. Anal Bioanal Chem 2009;393:1135-41
  • Altan N, Chen Y, Schindler M, Simon SM. Tamoxifen inhibits acidification in cells independent of the estrogen receptor. Proc Natl Acad Sci 1999;96:4432-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.