124
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Design of small molecules targeting transcriptional activation by NF-κB: overview of recent advances

Pages 823-836 | Published online: 22 Jul 2009

Bibliography

  • Sen R, Baltimore D. Inducibility of κ immunoglobulin enhancer-binding protein Nf-κB by a posttranslational mechanism. Cell 1986;47:921-8
  • Vallabhapurapu S, Karin M. Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 2009;27:693-733
  • Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell 2008;132:344-62
  • Ogawa S, Lozach J, Benner C, et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 2005;122:707-21
  • Pascual G, Fong AL, Ogawa S, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 2005;437:759-63
  • Ghisletti S, Huang W, Ogawa S, et al. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARγ. Mol Cell 2007;25:57-70
  • Hoberg JE, Popko AE, Ramsey CS, Mayo MW. IκB kinase a-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 2006;26:457-71
  • Baud V, Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009;8:33-40
  • Wu Y, Deng J, Rychahou PG, et al. Stabilization of snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 2009;15:416-28
  • Pan X, Arumugam T, Yamamoto T, et al. Nuclear factor-κB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. Clin Cancer Res 2008;14:8143-51
  • Crombez L, Morris MC, Dufort S, et al. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 2009 [Epub ahead of print]
  • Strnad J, Burke JR. IκB kinase inhibitors for treating autoimmune and inflammatory disorders: potential and challenges. Trends Pharmacol Sci 2007;28:142-8
  • Frelin C, Imbert V, Griessinger E, et al. AS602868, a pharmacological inhibitor of IKK2, reveals the apoptotic potential of TNF-α in Jurkat leukemic cells. Oncogene 2003;22:8187-94
  • Burke JR, Pattoli MA, Gregor KR, et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J Biol Chem 2003;278:1450-6
  • Greve B, Weissert R, Hamdi N, et al. IκB kinase 2/b deficiency controls expansion of autoreactive T cells and suppresses experimental autoimmune encephalomyelitis. J Immunol 2007;179:179-85
  • Vodanovic-Jankovic S, Hari P, Jacobs P, et al. NF-κB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood 2006;107:827-34
  • Hideshima T, Chauhan D, Richardson P, et al. NF-κB as a therapeutic target in multiple myeloma. J Biol Chem 2002;277:16639-47
  • Yemelyanov A, Gasparian A, Lindholm P, et al. Effects of IKK inhibitor PS1145 on NF-kappaB function, proliferation, apoptosis and invasion activity in prostate carcinoma cells. Oncogene 2006;25:387-98
  • Yang J, Amiri KI, Burke JR, et al. BMS-345541 targets inhibitor of kB kinase and induces apoptosis in melanoma: involvement of nuclear factor κB and mitochondria pathways. Clin Cancer Res 2006;12:950-60
  • Schön M, Wienrich BG, Kneitz S, et al. KINK-1, a novel small-molecule inhibitor of IKKβ, and the susceptibility of melanoma cells to antitumoral treatment. J Natl Cancer Inst 2008;100:862-75
  • Hideshima T, Neri P, Tassone P, et al. MLN120B, a novel IκB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res 2006;12:5887-94
  • Griessinger E, Frelin C, Cuburu N, et al. Preclinical targeting of NF-κB and FLT3 pathways in AML cells. Leukemia 2008;22:1466-9
  • Nagashima K, Sasseville VG, Wen D, et al. Rapid TNFR1-dependent lymphocyte depletion in vivo with a selective chemical inhibitor of IKKβ. Blood 2006;107:4266-73
  • McIntyre KW, Shuster DJ, Gillooly KM, et al. A highly selective inhibitor of I κB kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum 2003;48:2652-9
  • Karin M. The IκB kinase – a bridge between inflammation and cancer. Cell Res 2008;18:334-42
  • Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 2001;21:185-210
  • Straus DS, Pascual G, Li M, et al. 15-deoxy-D12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc Natl Acad Sci USA 2000;97:4844-9
  • Rossi A, Kapahi P, Natoli G, et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 2000;403:103-8
  • Cernuda-Morollón E, Pineda-Molina E, Cañada FJ, Pérez-Sala D. 15-Deoxy-D12, 14-prostaglandin J2 inhibition of NF-κB-DNA binding through covalent modification of the p50 subunit. J Biol Chem 2001;276:35530-6
  • Pande V, Ramos MJ. Molecular recognition of 15-deoxy-D12,14-prostaglandin J2 by nuclear factor-κ B and other cellular proteins. Bioorg Med Chem Lett 2005;15:4057-63
  • Musiek ES, Gao L, Milne GL, et al. Cyclopentenone isoprostanes inhibit the inflammatory response in macrophages. J Biol Chem 2005;280:35562-70
  • Musiek ES, Brooks JD, Joo M, et al. Electrophilic cyclopentenone neuroprostanes are anti-inflammatory mediators formed from the peroxidation of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. J Biol Chem 2008;283:19927-35
  • Lyss G, Knorre A, Schmidt TJ, et al. The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-κB by directly targeting p65. J Biol Chem 1998;273:33508-16
  • García-Piñeres AJ, Castro V, Mora G, et al. Cysteine 38 in p65/NF-κB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 2001;276:39713-20
  • García-Piñeres AJ, Lindenmeyer MT, Merfort I. Role of cysteine residues of p65/NF-κB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci 2004;75:841-56
  • Ahmad R, Raina D, Meyer C, et al. Triterpenoid CDDO-Me blocks the NF-κB pathway by direct inhibition of IKKβ on Cys-179. J Biol Chem 2006;281:35764-9
  • Liby K, Risingsong R, Royce DB, et al. Prevention and treatment of experimental estrogen receptor-negative mammary carcinogenesis by the synthetic triterpenoid CDDO-methyl Ester and the rexinoid LG100268. Clin Cancer Res 2008;14:4556-63
  • Holkova B, Kummars S, Glauber P, et al. A phase I study of 1-cyano-3 12 dioxoolean-1 9-diene-28-oic acid (CDDO) in advanced solid tumors. J Clin Oncol 2007;25(18S): (June 20 suppl abstract 14127)
  • Hong DS, Kurzrock R, Supko JG, et al. Phase I trial of a novel oral NF-κB/STAT3 inhibitor RTA 402 in patients with solid tumors and lymphoid malignacies. J Clin Oncol 2008;26(20 Suppl): abstract 3517
  • Molckovsky A, Siu LL. First-in-class, first-in-human phase I results of targeted agents: Highlights of the 2008 American Society of Clinical Oncology meeting. J Hematol Oncol 2008;1:20
  • Cui T, Schopfer FJ, Zhang J, et al. Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators. J Biol Chem 2006;281:35686-98
  • Batthyany C, Schopfer FJ, Baker PR, et al. Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J Biol Chem 2006;281:20450-63
  • Ichikawa T, Zhang J, Chen K, et al. Nitroalkenes suppress lipopolysaccharide-induced signal transducer and activator of transcription signaling in macrophages: a critical role of mitogen-activated protein kinase phosphatase 1. Endocrinology 2008;149:4086-94
  • Matsumoto N, Ariga A, To-e S, et al. Synthesis of NF-κB activation inhibitors derived from epoxyquinomicin C. Bioorg Med Chem Lett 2000;10:865-9
  • Yamamoto M, Horie R, Takeiri M, et al. Inactivation of NF-κB components by covalent binding of (-)-dehydroxymethylepoxyquinomicin to specific cysteine residues. J Med Chem 2008;51:5780-8
  • Watanabe M, Nakashima M, Togano T, et al. Identification of the RelA domain responsible for action of a new NF-κB inhibitor DHMEQ. Biochem Biophys Res Commun 2008;376:310-4
  • Katsman A, Umezawa K, Bonavida B. Chemosensitization and immunosensitization of resistant cancer cells to apoptosis and inhibition of metastasis by the specific NF-κB inhibitor DHMEQ. Curr Pharm Des 2009;15:792-808
  • Kim EH, Surh YJ. 15-deoxy-D12, 14-prostaglandin J2 as a potential endogenous regulator of redox-sensitive transcription factors. Biochem Pharmacol 2006;72:1516-28
  • Pérez-Sala D, Cernuda-Morollón E, Cañada FJ. Molecular basis for the direct inhibition of AP-1 DNA binding by 15-deoxy-D12,14-prostaglandin J2. J Biol Chem 2003;278:51251-60
  • Nakajima H, Fujiwara H, Furuichi Y, et al. A novel small-molecule inhibitor of NF-κB signaling. Biochem Biophys Res Commun 2008;368:1007-13
  • Hirose K, Wakashin H, Oki M, et al. GS143, an IκB ubiquitination inhibitor, inhibits allergic airway inflammation in mice. Biochem Biophys Res Commun 2008;374:507-11
  • De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 2009;23:281-91
  • Straus DS, Glass CK. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol 2007;28:551-8
  • Necela BM, Cidlowski JA. Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells. Proc Am Thorac Soc 2004;1:239-46
  • Barnes PJ. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br J Pharmacol 2006;148:245-54
  • Luecke HF, Yamamoto KR. The glucocorticoid receptor blocks P-TEFb recruitment by NFκB to effect promoter-specific transcriptional repression. Genes Dev 2005;19:1116-27
  • Beck IM, Vanden Berghe W, Vermeulen L, et al. Altered subcellular distribution of MSK1 induced by glucocorticoids contributes to NF-κB inhibition. EMBO J 2008;27(12):1682-93
  • Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 2002;96:23-43
  • Schäcke H, Berger M, Rehwinkel H, Asadullah K. Selective glucocorticoid receptor agonists (SEGRAs): novel ligands with an improved therapeutic index. Mol Cell Endocrinol 2007;275:109-17
  • Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007;275:79-97
  • Lewis JD, Lichtenstein GR, Deren JJ, et al. Rosiglitazone for Ulcerative Colitis Study Group. Gastroenterology 2008;134:688-95
  • Jennewein C, Kuhn AM, Schmidt MV, et al. Sumoylation of peroxisome proliferator-activated receptor γ by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from κB binding sites mediating transrepression of proinflammatory cytokines. J Immunol 2008;181:5646-52
  • Blaschke F, Takata Y, Caglayan E, et al. A nuclear receptor corepressor-dependent pathway mediates suppression of cytokine-induced C-reactive protein gene expression by liver X receptor. Circ Res 2006;99:e88-99
  • Gregoire FM, Zhang F, Clarke HJ, et al. MBX-102/JNJ39659100, a novel peroxisome proliferator activated receptor-{gamma} ligand with weak transactivation activity retains full anti-diabetic properties in the absence of side effects. Mol Endocrinol 2009. [Epub ahead of print]
  • Rosenstock J, Flores-Lozano F, Schartz S, et al. A novel non-TZD insulin sensitizer that improves glycemic control without causing edema or weight gain in patients with type 2 diabetes (T2DM) on concomitant insulin therapy. Diabetes 2005;54:abstract 44-OR
  • Chao EY, Caravella JA, Watson MA, et al. Structure-guided design of N-phenyl tertiary amines as transrepression-selective liver X receptor modulators with anti-inflammatory activity. J Med Chem 2008;51:5758-65
  • Bougarne N, Paumelle R, Caron S, et al. PPARα blocks glucocorticoid receptor a-mediated transactivation but cooperates with the activated glucocorticoid receptor a for transrepression on NF-κB. Proc Natl Acad Sci USA 2009. [Epub ahead of print]
  • Everhart MB, Han W, Sherrill TP, et al. Duration and intensity of NF-κB activity determine the severity of endotoxin-induced acute lung injury. J Immunol 2006;176:4995-5005
  • Schopf L, Savinainen A, Anderson K, et al. IKKb inhibition protects against bone and cartilage destruction in a rat model of rheumatoid arthritis. Arthritis Rheum 2006;54:3163-73
  • Ziegelbauer K, Gantner F, Lukacs NW, et al. A selective novel low-molecular-weight inhibitor of IκB kinase-β (IKK-β) prevents pulmonary inflammation and shows broad anti-inflammatory activity. Br J Pharmacol 2005;145:178-92
  • Podolin PL, Callahan JF, Bolognese BJ, et al. Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IκB Kinase 2, TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and antigen-induced T cell Proliferation. J Pharmacol Exp Ther 2005;312:373-81
  • Birrell MA, Hardaker E, Wong S, et al. IkB kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am J Respir Crit Care Med 2005;172:962-71
  • Birrell MA, Wong S, Hardaker EL. IκB kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. IκB kinase-2-independent and -dependent inflammation in airway disease models: relevance of IKK-2 inhibition to the clinic. Mol Pharmacol 2006;69:1791-800
  • Beraza N, Malato Y, Vander Borght S, et al. Pharmacological IKK2 inhibition blocks liver steatosis and initiation of non-alcoholic steatohepatitis. Gut 2008;57(5):655-63
  • Schäcke H, Schottelius A, Döcke WD, et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci USA 2004;101:227-32
  • Coghlan MJ, Jacobson PB, Lane B, et al. A novel antiinflammatory maintains glucocorticoid efficacy with reduced side effects. Mol Endocrinol 2003;17:860-9
  • De Bosscher K, Vanden Berghe W, Beck IM, et al. A fully dissociated compound of plant origin for inflammatory gene repression. Proc Natl Acad Sci USA 2005;102:15827-32
  • Dewint P, Gossye V, De Bosscher K, et al. A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis. J Immunol 2008;180:2608-15
  • López FJ, Ardecky RJ, Bebo B, et al. LGD-5552, an antiinflammatory glucocorticoid receptor ligand with reduced side effects, in vivo. Endocrinology 2008;149:2080-9
  • Kuzmich D, Kirrane T, Proudfoot J, et al. Identification of dissociated non-steroidal glucocorticoid receptor agonists. Bioorg Med Chem Lett 2007;17:5025-31
  • Biggadike K, Boudjelal M, Clackers M, et al. Nonsteroidal glucocorticoid agonists: tetrahydronaphthalenes with alternative steroidal A-ring mimetics possessing dissociated (transrepression/transactivation) efficacy selectivity. J Med Chem 2007;50:6519-34
  • Ali A, Balkovec JM, Greenlee M, et al. Discovery of betamethasone 17a-carbamates as dissociated glucocorticoid receptor modulators in the rat. Bioorg Med Chem 2008;16:7535-42
  • Robinson RP, Buckbinder L, Haugeto AI, et al. Octahydrophenanthrene-2,7-diol analogues as dissociated glucocorticoid receptor agonists: discovery and lead exploration. J Med Chem 2009;52:1731-43
  • Yang BV, Vaccaro W, Doweyko AM, et al. Discovery of novel dihydro-9, 10-ethano-anthracene carboxamides as glucocorticoid receptor modulators. Bioorg Med Chem Lett 2009;19:2139-43

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.