132
Views
4
CrossRef citations to date
0
Altmetric
Original Research

A New Strategy for the Rapid Identification and Validation of the Direct Targets of Aconitine-Induced Cardiotoxicity

, ORCID Icon, , & ORCID Icon
Pages 4649-4664 | Published online: 13 Nov 2021

References

  • WeiXY, QiuZD, ChenJL, et al. Research advancement in mechanisms of processing and compatibility for detoxication of Aconitums. China J Chin Mater Med. 2019;44:3695–3704. doi:10.19540/j.cnki.cjcmm.20190629.301
  • Chinese Pharmacopoeia Commission. Chinese pharmacopeia. China Med Sci Press. 2020;Part I:40, 200, 247.
  • BissetNG. Arrow poisons in China. Part II. Aconitum–botany, chemistry, and pharmacology. J Ethnopharmacol. 1981;4:247–336. doi:10.1016/0378-8741(81)90001-57029146
  • ZhouGH, TangLY, ZhouXD, et al. A review on phytochemistry and pharmacological activities of the processed lateral root of Aconitum carmichaelii Debeaux. J Ethnopharmacol. 2015;160:173–193. doi:10.1016/j.jep.2014.11.04325479152
  • ChanTYK. Aconite poisoning. Clin Toxicol. 2009;47:279–285. doi:10.1080/15563650902904407
  • TianZ, MaPY, YangCY, et al. Study on arrhythmia induced by aconitine in rats. Chin J Labora Diagno. 2016;20:1447–1448.
  • ZhouSS, YangJ, LiYQ, et al. Effect of Cl−channel blockers on aconitine-induced arrhythmias in rat heart. Exp Physiol. 2005;90:865–872. doi:10.1016/j.nimb.2005.08.15616118235
  • LiuF, HanX, LiN, et al. Aconitum alkaloids induce cardiotoxicity and apoptosis in embryonic zebrafish by influencing the expression of cardiovascular relative genes. Toxicol Lett. 2019;305:10–18. doi:10.1016/j.toxlet.2019.01.00230639578
  • ZhangF, CaiL, ZhangJ, et al. Aconitine-induced cardiac arrhythmia in human induced pluripotent stem cell-derived cardiomyocytes. Exp Ther Med. 2018;16:3497–3503. doi:10.3892/etm.2018.664430233701
  • ZhangX, ZhaoBX, SongYQ, et al. Compatibility effect of aconitine and ginsenosides Rb1 on energy metabolism of primary cultured myocardial cells. Moderniza Tradit Chin Med Mater Med World Sci Technol. 2015;17:1785–1789. doi:10.11842/wst.2015.09.006
  • ZhaoYN, XieWD, XingDM, et al. Advances in research approaches of action targets of active ingredients from Chinese herbs. Moderniza Tradit Chin Med Mater Med World Sci Technol. 2016;18:1005–1011. doi:10.11842/wst.2016.06.012
  • SongXQ, ZhangY, DaiEQ, et al. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking. Int Immunopharmacol. 2020;80:106179. doi:10.1016/j.intimp.2019.10617931972422
  • XieJ, GaoS, LiL, et al. Research progress and application strategy on network pharmacology in Chinese materia medica. Chin Tradit Herbal Drugs. 2019;50:2257–2265. doi:10.7501/j.issn.0253-2670.2019.10.001
  • WangX, WangZY, ZhengJH, et al. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med. 2021;19:1–11. doi:10.1016/S1875-5364(21)60001-833516447
  • WangS, TianY, WangM, et al. Advanced activity-based protein profiling application strategies for drug development. Front Pharmacol. 2018;9:353. doi:10.3389/fphar.2018.0035329686618
  • PaiMY, LomenickB, HwangH, et al. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol Biol. 2015;1263:287–298. doi:10.1007/978-1-4939-2269-7_2225618353
  • ParkYD, SunW, SalasA, et al. Identification of multiple cryptococcal fungicidal drug targets by combined gene dosing and drug affinity responsive target stability screening. mBio. 2016;7:e1016–e1073. doi:10.1128/mBio.01073-16
  • LuS, TianY, LuoY, et al. Iminostilbene, a novel small-molecule modulator of PKM2, suppresses macrophage inflammation in myocardial ischemia-reperfusion injury. J Adv Res. 2021;29:83–94. doi:10.1016/j.jare.2020.09.00133842007
  • SunGJ, LiXM, WeiJX, et al. Pharmacodynamic substances in Salvia miltiorrhiza for prevention and treatment of hyperlipidemia and coronary heart disease based on lipidomics technology and network pharmacology analysis. Biomed Pharmacother. 2021;141:111846. doi:10.1016/j.biopha.2021.11184634225018
  • LomenickB, HaoR, JonaiN, et al. Target identification using drug affinity responsive target stability (DARTS). P Natl Acad Sci USA. 2009;106:21984–21989. doi:10.1073/pnas.0910040106
  • GongF, PengX, SangY, et al. Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-m TOR-mediated signaling. Cell Death Dis. 2013;4:e913. doi:10.1038/cddis.2013.43824201812
  • Fleta-SorianoE, MartinezJP, HinkelmannB, et al. The myxobacterial metabolite ratjadone A inhibits HIV infection by blocking the Rev/CRM1-mediated nuclear export pathway. Microb Cell Fact. 2014;13:17. doi:10.1186/1475-2859-13-1724475978
  • ChinRM, FuXD, PaiMY, et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. 2014;510:397–401. doi:10.1038/nature1326424828042
  • WangJ, LuLH, WangY, et al. Qishenyiqi Dropping Pill attenuates myocardial fibrosis in rats by inhibiting RAAS-mediated arachidonic acid inflammation. J Ethnopharmacol. 2015;176:375–384. doi:10.1016/j.jep.2015.11.02326590099
  • LiangQR, LiuMJ, HuBW. The histo- and cyto-chemical demonstration of NADH dehydrogenase in myocardium of aconitine poisoning rat. Chin J Foren Med. 1991;6:84–86. doi:10.13618/j.issn.1001-5728.1991.02.009
  • PangYX, NieQH, LiuXN, et al. Analysis of three cell lysates on total protein extraction in Western blot. J Hebei Med Univ. 2019;40:263–267. doi:10.3969/j.issn.1007-3205.2019.03.004
  • YuHX, LiCY, WangX, et al. Techniques and strategies for potential protein target discovery and active pharmaceutical molecule screening in a pandemic. J Proteome Res. 2020;19:4242–4258. doi:10.1021/acs.jproteome.0c0037232957788
  • ShiMH, WangJN, XiaoYJ, et al. Glycogen metabolism and rheumatoid arthritis: the role of glycogen synthase 1 in regulation of synovial inflammation via blocking AMP-activated protein kinase activation. Front Immunol. 2018;9:1714. doi:10.3389/fimmu.2018.0171430100905
  • PedersonBA, ChenHY, SchroederJM, et al. Abnormal cardiac development in the absence of heart glycogen. Mol Cell Biol. 2004;24:7179–7187. doi:10.1128/MCB.24.16.7179-7187.200415282316
  • PanXQ, YanBH, ZhouJ, et al. Research progress of Chinese materia medica-induced cardiotoxicity. Prog Pharm Sci. 2020;44:730–742.
  • DissanayakeWC, SorrensonB, LeeKL, et al. α-catenin isoforms are regulated by glucose and involved in regulating insulin secretion in rat clonal β-cell models. Biochem J. 2020;477:763–772. doi:10.1042/BCJ2019083232003420
  • WangXK, WangQQ, HuangJL, et al. Novel candidate biomarkers of origin recognition complex 1, 5 and 6 for survival surveillance in patients with hepatocellular carcinoma. J Cancer. 2020;11:1869–1882. doi:10.7150/jca.3916332194798
  • YanH, ZhangCB, LiCH, et al. Progress in phospholipase A2 and its relevant Chinese materia medica. Moderniza Tradit Chin Med Mater Med World Sci Technol. 2013;15:1620–1629. doi:10.11842/wst.2013.07.025
  • McHowatJ, CreerMH. Catalytic features, regulation and function of myocardial phospholipase A2. Curr Med Chem Cardiovasc Hematol Agents. 2004;2:209–218. doi:10.2174/156801604335628215320787
  • PietruszewskaW, FendlerW, PodwysockaM, et al. Expression of transcript variants of PTGS1 and PTGS2 genes among patients with chronic rhinosinusitis with nasal polyps. Diagnostics (Basel). 2021;11:135. doi:10.3390/diagnostics1101013533467191
  • BolliR, ShinmuraK, TangXL, et al. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res. 2002;55:506–519. doi:10.1016/S0008-6363(02)00414-512160947
  • SaitoT, RodgerIW, HuF, et al. Inhibition of COX pathway in experimental myocardial infarction. J Mol Cell Cardiol. 2004;37:71–77. doi:10.1016/j.yjmcc.2004.04.00215242737
  • ChengI, LiuX, PlummerSJ, et al. COX2 genetic variation, NSAIDs, and advanced prostate cancer risk. Brit J Cancer. 2007;97:557–561. doi:10.1038/sj.bjc.660387417609663
  • ChengC, ZengYL, WangJ, et al. Effect observation of aconitine on the expression of PGE2 in peripheral blood mononuclear cells of normal 615 mice and its regulation on treg. J Liaoning Univ Tradit Chin Med. 2020;22:42–46. doi:10.13194/j.issn.1673-842x.2020.04.011
  • SciarrettaS, VolpeM, SadoshimaJ. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res. 2014;114:549–564. doi:10.1161/CIRCRESAHA.114.30202224481845
  • JianB, XuJ, ConnollyJ, et al. Serotonin mechanisms in heart valve disease I serotonin-induced up-regulation of transforming growth factor- beta 1 via G-protein signal transduction in aortic valve interstitial cells. Am J Pathol. 2002;161:2111–2121. doi:10.1016/S0002-9440(10)64489-612466127
  • HuangGY, YangL, ZhouW, et al. Study on cardiotoxicity and mechanism of “fuzi” extracts based on metabonomics. Int J Mol Sci. 2018;19:3506. doi:10.3390/ijms19113506
  • YuYH, HuZY, LiB, et al. Ivabradine improved left ventricular function and pressure overload-induced cardiomyocyte apoptosis in a transverse aortic constriction mouse model. Mol Cell Biochem. 2019;450:25–34. doi:10.1007/s11010-018-3369-x29790114
  • IdrissHT, NaismithJH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Techniq. 2000;50:184–195. doi:10.1002/1097-0029(20000801)50:33.0.CO;2-H
  • PengF, ZhangN, WangCT, et al. Aconitine induces cardiomyocyte damage by mitigating BNIP3‐dependent mitophagy and the TNFα‐NLRP3 signalling axis. Cell Proliferat. 2020;53:e12701. doi:10.1111/cpr.12701
  • DongLY, ChenZW. Myocardial ischemia/reperfusion injury and inflammatory reaction. Chin J Clin Pharm Th. 2008;13:582–588.
  • YuanL, ZhouLJ. Effect of arachidonic acid metabolism on cardiac fibrosis associated with inflammation. Adv Cardiovasc Dis. 2010;31:62–65. doi:10.3969/j.issn.1004-3934.2010.01.020
  • ChangJ, KimY, KwonHJ. Advances in identification and validation of protein targets of natural products without chemical modification. Nat Prod Rep. 2016;33(5):719–730. doi:10.1039/c5np00107b26964663