75
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Review of Pharmacotherapeutic Targets in Alzheimer’s Disease and Its Management Using Traditional Medicinal Plants

, , ORCID Icon, , , ORCID Icon, , , & show all
Pages 47-74 | Received 27 Nov 2023, Accepted 03 May 2024, Published online: 19 May 2024

References

  • Toodayan N. Professor Alois Alzheimer (1864–1915): lest we forget. J Clin Neurosci. 2016;31:47–55. doi:10.1016/j.jocn.2015.12.032
  • Li X, Feng X, Sun X, Hou N, Han F, Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front Aging Neurosci. 2022;14:937486. doi:10.3389/fnagi.2022.937486
  • Thébaut C, Achille D, Preux P, Guerchet M. Costs of Dementia in Low-And Middle-Income Countries: a Systematic Review. J Alzh Dis. 2022;2022:1.
  • Huo Z. The Disease Burden and Economic Cost of Dementia in an Asian Population. Hong Kong: The Chinese University of Hong Kong; 2021.
  • Elfaki BA. Factors contributes to overweight and obesity among young adults; 2023.
  • Ma Y, Ajnakina O, Steptoe A, Cadar D. Higher risk of dementia in English older individuals who are overweight or obese. Internat J Epidemiol. 2020;49(4):1353–1365. doi:10.1093/ije/dyaa099
  • Kabir MT, Shah MA, Alothaim AAS, Al-Ghamdi MS, Rahman MH. Neuroprotective effects of saponins on neurodegenerative diseases. In: Phytonutrients and Neurological Disorders. Elsevier; 2023:259–282.
  • Selman A, Burns S, Reddy AP, Culberson J, Reddy PH. The role of obesity and diabetes in dementia. Internat J Molec Sci. 2022;23(16):9267. doi:10.3390/ijms23169267
  • Sathianathan R, Kantipudi SJ. The dementia epidemic: impact, prevention, and challenges for India. Indian J Psych. 2018;60(2):165. doi:10.4103/psychiatry.IndianJPsychiatry_261_18
  • Ravindranath V, Sundarakumar JS. Changing demography and the challenge of dementia in India. Nat Rev Neurol. 2021;17(12):747–758. doi:10.1038/s41582-021-00565-x
  • Binda A, Murano C, Rivolta I. Innovative therapies and nanomedicine applications for the treatment of Alzheimer’s disease: a state-of-The-art (2017–2020). Internat J Nanomed. 2020;15:6113–6135. doi:10.2147/IJN.S231480
  • Tarawneh R, Holtzman DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harbor Perspect Med. 2012;2(5):a006148–a006148. doi:10.1101/cshperspect.a006148
  • Zubenko GS, Zubenko WN, McPherson S, et al. A collaborative study of the emergence and clinical features of the major depressive syndrome of Alzheimer’s disease. Am J Psych. 2003;160(5):857–866. doi:10.1176/appi.ajp.160.5.857
  • Kalia M. Dysphagia and aspiration pneumonia in patients with Alzheimer’s disease. Metabolism. 2003;52:36–38. doi:10.1016/S0026-0495(03)00300-7
  • Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Progr Neurobiol. 2019;174:53–89. doi:10.1016/j.pneurobio.2018.12.006
  • Franchi C, Lucca U, Tettamanti M, et al. Cholinesterase inhibitor use in Alzheimer’s disease: the EPIFARM‐Elderly Project. Pharmacoepidemiol Drug Saf. 2011;20(5):497–505. doi:10.1002/pds.2124
  • Khan S, Ullah H, Hussain R, et al. Synthesis, in vitro bio-evaluation, and molecular docking study of thiosemicarbazone-based isatin/bis-Schiff base hybrid analogues as effective cholinesterase inhibitors. J Mol Struct. 2023;1284:135351. doi:10.1016/j.molstruc.2023.135351
  • Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Europ J Med Chem. 2019;163:116–135. doi:10.1016/j.ejmech.2018.11.049
  • Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Internat J Nanomed. 2019;5541–5554. doi:10.2147/IJN.S200490
  • Patwardhan B. Ayurveda: the designer medicine. Indian Drugs. 2000;37(5):213–227.
  • Sharma R, Kuca K, Nepovimova E, Kabra A, Rao M, Prajapati P. Traditional Ayurvedic and herbal remedies for Alzheimer’s disease: from bench to bedside. Expert Rev Neurotherap. 2019;19(5):359–374. doi:10.1080/14737175.2019.1596803
  • Adams M, Gmünder F, Hamburger M. Plants traditionally used in age related brain disorders—A survey of ethnobotanical literature. Journal of Ethnopharmacology. 2007;113(3):363–381. doi:10.1016/j.jep.2007.07.016
  • Zieneldien T, Kim J, Cao C. The multifaceted role of neuroprotective plants in Alzheimer’s Disease treatment. Geriatrics. 2022;7(2):24. doi:10.3390/geriatrics7020024
  • Gupta VS, Kale PP. Combinatory Approaches Targeting Cognitive Impairments and Memory Enhancement: a Review. Current Drug Targets. 2023;24(1):55–70. doi:10.2174/1389450123666220928152743
  • Wahid M, Ali A, Saqib F, et al. Pharmacological exploration of traditional plants for the treatment of neurodegenerative disorders. Phytoth Res. 2020;34(12):3089–3112. doi:10.1002/ptr.6742
  • Singh R, Bhattacharyya C, Prashar V, et al. Tinospora cordifolia: a potential neuroprotective agent against various neurodegenerative diseases. J Herbal Med. 2023;42:100775. doi:10.1016/j.hermed.2023.100775
  • Parihar M, Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci. 2004;11(5):456–467. doi:10.1016/j.jocn.2003.12.007
  • Rai S Nand, Tiwari N, Singh P, et al. Therapeutic potential of vital transcription factors in Alzheimer’s and Parkinson’s disease with particular emphasis on transcription factor EB mediated autophagy. Front Neurosci. 2021;15. doi: 10.3389/fnins.2021.777347
  • Ramakrishna K, Nalla LV, Naresh D, et al. WNT-β Catenin Signaling as a Potential Therapeutic Target for Neurodegenerative Diseases: Current Status and Future Perspective. Diseases.2023;11(3):89. doi:10.3390/diseases11030089
  • Türkan F. Investigation of the toxicological and inhibitory effects of some benzimidazole agents on acetylcholinesterase and butyrylcholinesterase enzymes. Arch Physiol Biochem. 2021;127(2):97–101. doi:10.1080/13813455.2019.1618341
  • Korabecny J, Soukup O. Cholinesterase research. MDPI. 2021;11:1121.
  • Trang A, Khandhar PB. Physiology, acetylcholinesterase; 2019.
  • Kaur A, Anand C, Singh TG, Dhiman S, Babbar R. Acetylcholinesterase inhibitors: a milestone to treat neurological disorders. Plant Arch. 2019;19:1347–1359.
  • Mesulam -M-M. The cholinergic innervation of the human cerebral cortex. Prog Brain Res. 2004;145:67–78.
  • Chen X-Q, Mobley WC. Exploring the pathogenesis of Alzheimer disease in basal forebrain cholinergic neurons: converging insights from alternative hypotheses. Front Neurosci. 2019;13:451499. doi:10.3389/fnins.2019.00446
  • Hampel H, Mesulam MM, Cuello AC, et al. Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. Prevent Alzh Dis. 2019;6:2–15. doi:10.14283/jpad.2018.43
  • Mesulam MMI. Central cholinergic pathways neuroanatomy and some behavioral implications. Neurotransmitt Cort Funct. 1988;1998:237–260.
  • Geula C, Dunlop SR, Ayala I, et al. Basal forebrain cholinergic system in the dementias: vulnerability, resilience, and resistance. J Neurochem. 2021;158(6):1394–1411. doi:10.1111/jnc.15471
  • Swaab DF, Kreier F, Lucassen PJ, Salehi A, Buijs RM. The Human Hypothalamus: Anterior Region. Elsevier; 2021.
  • Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1, 2, 4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem. 2019;85:82–96. doi:10.1016/j.bioorg.2018.12.017
  • Shrivastava SK, Nivrutti AA, Bhardwaj B, et al. Drug reposition-based design, synthesis, and biological evaluation of dual inhibitors of acetylcholinesterase and β-Secretase for treatment of Alzheimer’s disease. J Mol Struct. 2022;1262:132979. doi:10.1016/j.molstruc.2022.132979
  • Wright PW. Functional anatomy: types of cells/physiology. Wiley Encycl Health Psychol. 2020;2020:5–12.
  • Murugan NA, Pandian CJ, Jeyaseelan JM, et al. Computational development of Alzheimer’s therapeutics and diagnostics; 2021.
  • Ayvazyan NM, O’Leary VB, Dolly JO, Ovsepian SV. Neurobiology and therapeutic utility of neurotoxins targeting postsynaptic mechanisms of neuromuscular transmission. Drug Discovery Today. 2019;24(10):1968–1984. doi:10.1016/j.drudis.2019.06.012
  • Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Internat J Mol Sci. 2021;22(17):9290. doi:10.3390/ijms22179290
  • Taha M, Sadia H, Rahim F, et al. Synthesis, biological evaluation and molecular docking study of oxindole based chalcone analogues as potent anti-Alzheimer agents. J MolStruct. 2023;1285:135530. doi:10.1016/j.molstruc.2023.135530
  • Bacalhau P, San Juan AA, Goth A, Caldeira AT, Martins R, Burke AJ. Insights into (S)-rivastigmine inhibition of butyrylcholinesterase (BuChE): molecular docking and saturation transfer difference NMR (STD-NMR). Bioorg Chem. 2016;67:105–109. doi:10.1016/j.bioorg.2016.06.002
  • Ramrao SP, Verma A, Waiker DK, Tripathi PN, Shrivastava SK. Design, synthesis, and evaluation of some novel biphenyl imidazole derivatives for the treatment of Alzheimer’s disease. J Molecul Struct. 2021;1246:131152. doi:10.1016/j.molstruc.2021.131152
  • Jana A, Bhattacharjee A, Das SS, et al. Molecular insights into therapeutic potentials of hybrid compounds targeting Alzheimer’s disease. Molec Neurobiol. 2022;59(6):3512–3528. doi:10.1007/s12035-022-02779-6
  • Premkumar T, Sajitha Lulu S. Molecular mechanisms of emerging therapeutic targets in Alzheimer’s disease: a systematic review. Neurochem J. 2022;16(4):443–455. doi:10.1134/S1819712422040183
  • Khan S, Ullah H, Taha M, et al. Synthesis, DFT studies, molecular docking and biological activity evaluation of thiazole-sulfonamide derivatives as potent Alzheimer’s inhibitors. Molecules. 2023;28(2):559. doi:10.3390/molecules28020559
  • Hussain R, Ullah H, Rahim F, et al. Multipotent cholinesterase inhibitors for the treatment of Alzheimer’s disease: synthesis, biological analysis and molecular docking study of benzimidazole-based thiazole derivatives. Molecules. 2022;27(18):6087. doi:10.3390/molecules27186087
  • Jagust WJ, Teunissen CE, DeCarli C. The complex pathway between amyloid β and cognition: implications for therapy. The Lancet Neurology. 2023;22(9):847–857. doi:10.1016/S1474-4422(23)00128-X
  • Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem. 2009;110(4):1129–1134. doi:10.1111/j.1471-4159.2009.06181.x
  • Rai SN, Chaturvedi VK, Singh BK, Singh MP. Commentary: trem2 deletion reduces late-stage amyloid plaque accumulation, elevates the Aβ42: aβ40 ratio, and exacerbates axonal dystrophy and dendritic spine loss in the PS2APP Alzheimer’s mouse model. Front Aging Neurosci. 2020;12:219. doi:10.3389/fnagi.2020.00219
  • Vassar R, Bennett BD, Babu-Khan S, et al. β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286(5440):735–741. doi:10.1126/science.286.5440.735
  • De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC. A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry. 2001;40(35):10447–10457. doi:10.1021/bi0101392
  • Wu A-G, Zhou X-G, Qiao G, et al. Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Age Res Rev. 2021;65:101202. doi:10.1016/j.arr.2020.101202
  • Tan M-S, J-T Y, Jiang T, Zhu X-C, Tan L. The NLRP3 inflammasome in Alzheimer’s disease. Molec Neurobiol. 2013;48:875–882. doi:10.1007/s12035-013-8475-x
  • Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, et al. Alzheimer’s disease: an updated overview of its genetics. Internat J Molec Sci. 2023;24(4):3754. doi:10.3390/ijms24043754
  • Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Paper presented at: Seminars in cell & developmental biology; 2020.
  • Das N, Raymick J, Sarkar S. Role of metals in Alzheimer’s disease. Metab Brain Dis. 2021;36(7):1627–1639. doi:10.1007/s11011-021-00765-w
  • Davidson R, Krider RI, Borsellino P, Noorda K, Alhwayek G, Vida TA. Untangling Tau: molecular Insights into Neuroinflammation, Pathophysiology, and Emerging Immunotherapies. Curr Issu Molec Biol. 2023;45(11):8816–8839. doi:10.3390/cimb45110553
  • Michalicova A, Majerova P, Kovac A. Tau protein and its role in blood–brain barrier dysfunction. Front Molec Neurosci. 2020;13:570045. doi:10.3389/fnmol.2020.570045
  • Guha S, Johnson GV, Nehrke K. The crosstalk between pathological tau phosphorylation and mitochondrial dysfunction as a key to understanding and treating Alzheimer’s disease. Mol Neurobiol. 2020;57:5103–5120. doi:10.1007/s12035-020-02084-0
  • Wang L, Yin Y-L, Liu X-Z, et al. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Translat Neurodeg. 2020;9(1):1–13. doi:10.1186/s40035-020-00189-z
  • Maitra S, Vincent B. Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer’s disease: mechanisms and possible therapeutic interventions. Life Sci. 2022;308:120986. doi:10.1016/j.lfs.2022.120986
  • Jiang H, Wang X, Zhang H, Chang Y, Feng M, Wu S. Loss‐of‐function mutation of serine racemase attenuates excitotoxicity by intravitreal injection of N‐methyl‐D‐aspartate. J Neuroch. 2016;136(1):186–193. doi:10.1111/jnc.13400
  • Pannaccione A, Piccialli I, Secondo A, et al. The Na+/Ca2+ exchanger in Alzheimer’s disease. Cell Calcium. 2020;87:102190. doi:10.1016/j.ceca.2020.102190
  • Kumar A, Behl T, Jamwal S, Kaur I, Sood A, Kumar P. Exploring the molecular approach of COX and LOX in Alzheimer’s and Parkinson’s disorder. Molec Biol Rep. 2020;47:9895–9912. doi:10.1007/s11033-020-06033-x
  • Allan Butterfield D. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Rad Res. 2002;36(12):1307–1313. doi:10.1080/1071576021000049890
  • Rai SN, Singh C, Singh A, Singh M, Singh BK. Mitochondrial dysfunction: a potential therapeutic target to treat Alzheimer’s disease. Mol Neurobiol. 2020;57:3075–3088. doi:10.1007/s12035-020-01945-y
  • Wen L-Y, Wan L, Lai J-N, et al. Increased risk of Alzheimer’s disease among patients with age-related macular degeneration: a nationwide population-based study. PLoS One. 2021;16(5):e0250440. doi:10.1371/journal.pone.0250440
  • Butterfield DA, Kanski J. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mechan Age Develop. 2001;122(9):945–962. doi:10.1016/S0047-6374(01)00249-4
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795. doi:10.1038/nature05292
  • Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J Neurochem. 1997;68(5):2061–2069. doi:10.1046/j.1471-4159.1997.68052061.x
  • Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1(6):529–539. doi:10.2174/1568026013394831
  • Teleanu DM, Niculescu A-G, Lungu II, et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Internat J Molecul Sci. 2022;23(11):5938. doi:10.3390/ijms23115938
  • Zafar S. Chief Role of Neuroinflammation and Oxidative Stress in Brain Disorders. In: The Role of Natural Antioxidants in Brain Disorders. Springer; 2023:89–109.
  • Chen X, Holtzman DM. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity. 2022;55:2236–2254. doi:10.1016/j.immuni.2022.10.016
  • Jabeen K, Rehman K, Akash MSH. Genetic mutations of APOEε4 carriers in cardiovascular patients lead to the development of insulin resistance and risk of Alzheimer’s disease. J Biochem Mol Toxicol. 2022;36(2):e22953. doi:10.1002/jbt.22953
  • Yamazaki Y, Zhao N, Caulfield TR, Liu -C-C, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–518. doi:10.1038/s41582-019-0228-7
  • Cai Z, Zhao Y, Zhao B. Roles of glycogen synthase kinase 3 in Alzheimer’s disease. Curr Alzh Res. 2012;9(7):864–879. doi:10.2174/156720512802455386
  • Kumari S, Singh A, Singh AK, et al. Circulatory GSK-3β: blood-based biomarker and therapeutic target for Alzheimer’s disease. J Alzheim Dis. 2022;85(1):249–260. doi:10.3233/JAD-215347
  • Yang Y, Wang L, Zhang C, et al. Ginsenoside Rg1 improves Alzheimer’s disease by regulating oxidative stress, apoptosis, and neuroinflammation through Wnt/GSK‐3β/β‐catenin signaling pathway. Chem Biol Drug Des. 2022;99(6):884–896. doi:10.1111/cbdd.14041
  • Sun Y, Ai JZ, Jin X, et al. IL‐8 protects prostate cancer cells from GSK‐3β‐induced oxidative stress by activating the mTOR signaling pathway. Prostate. 2019;79(10):1180–1190. doi:10.1002/pros.23836
  • Barber K, Mendonca P, Soliman KF. The neuroprotective effects and therapeutic potential of the chalcone cardamonin for Alzheimer’s disease. Brain Sci. 2023;13(1):145. doi:10.3390/brainsci13010145
  • Parhizkar S, Holtzman DM. APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Paper presented at: Seminars in immunology; 2022.
  • Xu L, He D, Bai Y. Microglia-mediated inflammation and neurodegenerative disease. Molecul Neurobiol. 2016;53(10):6709–6715. doi:10.1007/s12035-015-9593-4
  • Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease—a double-edged sword. Neuron. 2002;35(3):419–432. doi:10.1016/S0896-6273(02)00794-8
  • Asthana A, Tripathi S, Agarwal R. A systematic review and meta-analysis of randomized control trials to check role of non-steroidal anti-inflammatory drugs as protective factor in Alzheimer disease subjects. Advan Alzheim Dis. 2023;12(1):1–16. doi:10.4236/aad.2023.121001
  • Jiao X, Ashtari N, Rahimi-Balaei M, et al. Mevalonate cascade and neurodevelopmental and neurodegenerative diseases: future targets for therapeutic application. Curr Mol Pharmacol. 2017;10(2):115–140. doi:10.2174/1874467209666160112125446
  • Shrivastava S Kumar, Patel B K, Tripathi P Nath, Srivastava P, Sharma P, Tripathi A, Seth A and Tripathi M Kumar. (2018). Synthesis, evaluation and docking studies of some 4-thiazolone derivatives as effective lipoxygenase inhibitors. Chem. Pap., 72(11), 2769–2783. doi:10.1007/s11696-018-0520-9
  • Peauger L, Azzouz R, Gembus V, et al. Donepezil-based central acetylcholinesterase inhibitors by means of a “bio-oxidizable” prodrug strategy: design, synthesis, and in vitro biological evaluation. J Med Chem. 2017;60(13):5909–5926. doi:10.1021/acs.jmedchem.7b00702
  • Grutzendler J, Morris JC. Cholinesterase inhibitors for Alzheimer’s disease. Drugs. 2001;61:41–52. doi:10.2165/00003495-200161010-00005
  • Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Intervent Aging. 2008;3(2):211–225.
  • Li Q, He S, Chen Y, Feng F, Qu W, Sun H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Europ J Med Chem. 2018;158:463–477. doi:10.1016/j.ejmech.2018.09.031
  • Gottwald MD, Rozanski RI. Rivastigmine, a brain-region selective acetylcholinesterase inhibitor for treating Alzheimer’s disease: review and current status. Expert Opin Investigational Drugs. 1999;8(10):1673–1682. doi:10.1517/13543784.8.10.1673
  • Hopkins TJ, Rupprecht LE, Hayes MR, Blendy JA, Schmidt HD. Galantamine, an acetylcholinesterase inhibitor and positive allosteric modulator of nicotinic acetylcholine receptors, attenuates nicotine taking and seeking in rats. Neuropsychopharmacol. 2012;37(10):2310–2321. doi:10.1038/npp.2012.83
  • Lilienfeld S. Galantamine—a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev. 2002;8(2):159–176. doi:10.1111/j.1527-3458.2002.tb00221.x
  • Gohil K. Investigation of banglenes as neurotrophic agents and development of a new fluorescent protein-based FRET pair; 2022.
  • Amalraj A, Ac KV, Jude S, Kuttappan S. Galangal—Roles in nutraceuticals and functional foods. In: Herbs, Spices and Their Roles in Nutraceuticals and Functional Foods. Elsevier; 2023:95–109.
  • Husain A, Al Balushi K, Akhtar MJ, Khan SA. Coumarin linked heterocyclic hybrids: a promising approach to develop multi target drugs for Alzheimer’s disease. J Molec Struct. 2021;1241:130618. doi:10.1016/j.molstruc.2021.130618
  • Jantrachotechatchawan C. Contribution of Cholinergic Innervation to Adult Hippocampal Neurogenesis in Dementia. King’s College London; 2019.
  • Atlante A, Amadoro G, Latina V, Valenti D. Therapeutic potential of targeting mitochondria for Alzheimer’s disease treatment. J Clin Med. 2022;11(22):6742. doi:10.3390/jcm11226742
  • Seval N, Eaton E, Springer SA. Inpatient opioid use disorder treatment for the infectious disease physician. In: The Opioid Epidemic and Infectious Diseases. Elsevier; 2021:189–221.
  • Tari PK, Parsons CG, Collingridge GL, Rammes G. Memantine: updating a rare success story in pro-cognitive therapeutics. Neuropharmacology. 2023;109737. doi:10.1016/j.neuropharm.2023.109737
  • Jiang N. Plasticity of Hippocampal Synaptic Transmission and Intrinsic Excitability in a Mouse Model of Alzheimer’s Disease. Université de Bordeaux; 2019.
  • Kikuchi T. Is memantine effective as an NMDA receptor antagonist in adjunctive therapy for schizophrenia? Biomolecules. 2020;10(8):1134. doi:10.3390/biom10081134
  • Kolcheva M. Functional and pharmacological properties of GluN1/GluN2 and GluN1/GluN3 subtypes of NMDA receptors; 2023.
  • Zhou Y-Q, Yang Z-L, Xu L, Li P, Y-Z H. Akebia saponin D, a saponin component from Dipsacus asper Wall, protects PC 12 cells against amyloid-β induced cytotoxicity. Cell Biol Internat. 2009;33(10):1102–1110. doi:10.1016/j.cellbi.2009.06.028
  • Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Internat J Alzh Dis. 2012;2012. doi:10.1155/2012/728983
  • Mullard A. Sting of Alzheimer’s failures offset by upcoming prevention trials: three prevention trials in asymptomatic Alzheimer’s disease patients will attempt to validate the amyloid hypothesis, evaluate biomarkers and set the stage for drug approvals. Nat Rev Drug Disc. 2012;11(9):657–661. doi:10.1038/nrd3842
  • Ashford JW, Mahoney L, Burkett T. A role for complementary and integrative medicine in Alzheimer’s disease prevention. J Alzh Dis. 2015;48(1):13–14. doi:10.3233/JAD-150505
  • Huegel HM. Brain food for Alzheimer-free ageing: focus on herbal medicines. Nat Comp Therap Age Amyloidog Dis. 2015;2015:95–116.
  • Li N, Zhou L, Li W, Liu Y, Wang J, He P. Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer’s disease mouse model: a metabolomics study. J Chromat. 2015;985:54–61. doi:10.1016/j.jchromb.2015.01.016
  • Yan S, Li Z, Li H, Arancio O, Zhang W. Notoginsenoside R1 increases neuronal excitability and ameliorates synaptic and memory dysfunction following amyloid elevation. Scien Rep. 2014;4(1):6352. doi:10.1038/srep06352
  • Malve H. Management of Alzheimer’s disease: role of existing therapies, traditional medicines and new treatment targets. Indian J Pharmac Sci. 2017;79(1). doi:10.4172/pharmaceutical-sciences.1000195
  • Patwardhan B, Datta HS. Ayurveda and Brain health. In: Nutraceuticals in Brain Health and Beyond. Elsevier; 2021:441–453.
  • Shown S. Efficacy of Kushmanda (Benincasa Hispida) Swarasa in Mild Cognitive Impairment (MCI) of the Elderly. India: Rajiv Gandhi University of Health Sciences; 2018.
  • Nesari TM, Sanwal CS, Rath C, et al. Traditional Medicine Review; 2023.
  • Barve M, Mashru M, Jagtap C, Patgiri B, Prajapati P, Prajapati PK. Therapeutic potentials of metals in ancient India: a review through Charaka Samhita. J Ayurv Integrat Med. 2011;2(2):55. doi:10.4103/0975-9476.82523
  • Madhavi A, Savitha H. Depression-an Ayurvedic outlook. J Ayu Holistic Med. 2017;5(2):12–23.
  • Prajapati KK, Pande P, Acharya P. Ayurveda view on daivavyapashraya chikitsa: A; 2022.
  • Sharma R, Amin H. Rasayana Therapy: ayurvedic contribution to improve quality of life. World J Pharmacol Res Tech. 2015;4:23–33.
  • Saraf P, Tripathi PN, Tripathi MK, et al. Novel 5, 6-diphenyl-1, 2, 4-triazine-3-thiol derivatives as dual COX-2/5-LOX inhibitors devoid of cardiotoxicity. Bioorg Chem. 2022;129:106147. doi:10.1016/j.bioorg.2022.106147
  • Dastmalchi K, Dorman HD, Vuorela H, Hiltunen R. Plants as potential sources for drug development against Alzheimer’s disease. Int J Biomed Pharm Sci. 2007;1(2):83–104.
  • Simunkova M, Alwasel SH, Alhazza IM, et al. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol. 2019;93:2491–2513. doi:10.1007/s00204-019-02538-y
  • Yoo K-Y, Park S-Y. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules. 2012;17(3):3524–3538. doi:10.3390/molecules17033524
  • Singh AK, Rai SN, Maurya A, et al. Therapeutic potential of phytoconstituents in management of Alzheimer’s disease. Evid Bas Complement Alternat Med. 2021;2021:1–19. doi:10.1155/2021/5578574
  • Ahmed F, Chandra J, Urooj A, Rangappa K. In vitro antioxidant and anticholinesterase activity of Acorus calamus and Nardostachys jatamansi rhizomes. J Phar Res. 2009;2(5):830–883.
  • Vohora S, Shah SA, Dandiya P. Central nervous system studies on an ethanol extract of Acorus calamus rhizomes. J Ethnopharmacol. 1990;28(1):53–62. doi:10.1016/0378-8741(90)90065-2
  • Sharma V, Sharma R, Gautam DS, Kuca K, Nepovimova E, Martins N. Role of Vacha (Acorus calamus Linn.) in neurological and metabolic disorders: evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. J Clin Med. 2020;9(4):1176. doi:10.3390/jcm9041176
  • Mukherjee PK, Kumar V, Mal M, Houghton PJ. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14(4):289–300. doi:10.1016/j.phymed.2007.02.002
  • Li D, Ma J, Wei B, Gao S, Lang Y, Wan X. Effectiveness and safety of ginkgo biloba preparations in the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2023;15:1124710. doi:10.3389/fnagi.2023.1124710
  • Assumpção CF, Bachiega P, Morzelle MC, et al. Characterization, antioxidant potential and cytotoxic study of mangaba fruits. Ciência Rural. 2014;44:1297–1303. doi:10.1590/0103-8478cr20130855
  • Choi BW, Lee HS, Shin HC, Lee BH. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer’s disease therapy from Ecklonia cava. Phytoth Res. 2015;29(4):549–553. doi:10.1002/ptr.5282
  • El-Hawary SS, Fathy FI, Sleem AA, Morsy FA, Khadar MS, Mansour MK. Anticholinesterase activity and metabolite profiling of Syagrus romanzoffiana (Cham.) Glassman leaves and fruits via UPLC–QTOF–PDA–MS. Nat Prod Res. 2021;35(10):1671–1675. doi:10.1080/14786419.2019.1622113
  • Imran M, Ullah F, Ayaz M, et al. Anticholinesterase and antioxidant potentials of Nonea micrantha Bioss. & Reut along with GC-MS analysis. BMC Complement Alternat Med. 2017;17(1):1–12. doi:10.1186/s12906-017-2004-9
  • Kaur N, Sarkar B, Gill I, et al. Indian herbs and their therapeutic potential against Alzheimer’s disease and other neurological disorders. Neuroprot Effe Phytochem Neurolog Dis. 2017;2017:79–112.
  • Panossian A, Seo E-J, Efferth T. Effects of anti-inflammatory and adaptogenic herbal extracts on gene expression of eicosanoids signaling pathways in isolated brain cells. Phytomedicine. 2019;60:152881. doi:10.1016/j.phymed.2019.152881
  • Khojah H, Edrada-Ebel R. P43 the isolation and purification of bioactive metabolites from Ficus carica and their neuroprotective effects in Alzheimer’s disease. Biochem Pharmacol. 2017;139:140. doi:10.1016/j.bcp.2017.06.044
  • Chen H-Y, Yen G-C. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem. 2007;101(2):686–694. doi:10.1016/j.foodchem.2006.02.047
  • Aly SH, Eldahshan OA, Al-Rashood ST, et al. Chemical constituents, antioxidant, and enzyme inhibitory activities supported by in-silico study of n-hexane extract and essential oil of guava leaves. Molecules. 2022;27(24):8979. doi:10.3390/molecules27248979
  • Kamran M, Kousar R, Ullah S, et al. Taxonomic distribution of medicinal plants for Alzheimer’s Disease: a cue to novel drugs. Internat J Alzh Dis. 2020;2020:1–15. doi:10.1155/2020/7603015
  • Choi BW, Ryu G, Park SH, et al. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: lead compounds for Alzheimer’s disease therapy. Phytoth Res. 2007;21(5):423–426. doi:10.1002/ptr.2090
  • Bhattacharjee S, Banerjee N, Chatterjee S, et al. Role of turmeric in management of different non-communicable diseases. World J Pharm Pharmac Sci. 2017;6(7):1767–1778.
  • Uddin MJ, Alam MN, Biswas K, Rahman MA. In vitro antioxidative and cholinesterase inhibitory properties of Thunbergia grandiflora leaf extract. Cogent Food Agricult. 2016;2(1):1256929. doi:10.1080/23311932.2016.1256929
  • Penido AB, De Morais SM, Ribeiro AB, et al. Medicinal plants from northeastern Brazil against Alzheimer’s disease. Evid Bas Complement Altern Med. 2017;2017. doi:10.1155/2017/1753673
  • Panche AN, Chandra S, Diwan A. Multi-target β-protease inhibitors from Andrographis paniculata: in silico and in vitro studies. Plants. 2019;8(7):231. doi:10.3390/plants8070231
  • Sobhani R, Pal AK, Bhattacharjee A, Mitra S, Aguan K. Screening indigenous medicinal plants of Northeast India for their anti-Alzheimer’s properties. Pharmacog J. 2017;9(1):1.
  • Cioanca O, Hritcu L, Mihasan M, Trifan A, Hancianu M. Inhalation of coriander volatile oil increased anxiolytic–antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1–42) rat model of Alzheimer’s disease. Physiol Behav. 2014;131:68–74. doi:10.1016/j.physbeh.2014.04.021
  • Zarmouh NO, Messeha SS, Elshami FM, Soliman KF. Natural products screening for the identification of selective monoamine oxidase-B inhibitors. Europ J Med Plant. 2016;15(1):1–16. doi:10.9734/EJMP/2016/26453
  • Sabzehzari M, Naghavi MR, Bozari M, Orafai HM, Johnston TP, Sahebkar A. Pharmacological and therapeutic aspects of plants from the genus Ferula: a comprehensive review. Mini Rev Med Chem. 2020;20(13):1233–1257. doi:10.2174/1389557520666200505125618
  • Sithisarn P, Jarikasem S. Antioxidant activity of Acanthopanax trifoliatus. Med Princip Pract. 2009;18(5):393–398. doi:10.1159/000226294
  • Feroz F, Naeem I, Nawaz SA, Khan N, Khan MR, Choudhary MI. New pregnane-type steroidal alkaloids from Sarcococca saligna and their cholinesterase inhibitory activity. Steroids. 2004;69(11–12):735–741. doi:10.1016/j.steroids.2004.03.016
  • Parveen S, Farooq A, Farooq A, Choudhary MI, Choudhary MI. Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry. 2001;58(6):963–968. doi:10.1016/S0031-9422(01)00332-6
  • Hostettmann K, Borloz A, Urbain A, Marston A. Natural product inhibitors of acetylcholinesterase. Curr Org Chem. 2006;10(8):825–847. doi:10.2174/138527206776894410
  • Chen Y, Zhang J, Zhang B, Gong C-X. Targeting insulin signaling for the treatment of Alzheimer’s disease. Curr Top Med Chem. 2016;16(5):485–492. doi:10.2174/1568026615666150813142423
  • Batista ÂG, Ferrari AS, da Cunha DC, et al. Polyphenols, antioxidants, and antimutagenic effects of Copaifera langsdorffii fruit. Food Chemistry. 2016;197:1153–1159. doi:10.1016/j.foodchem.2015.11.093
  • Kaur N, Sarkar B, Gill I, et al. Indian herbs and their therapeutic potential against Alzheimer’s disease: what makes them special? Neuroprot Eff Phytochem Neurolog Dis. 2016;2016:1.
  • Damodaran T, Tan BWL, Liao P, Ramanathan S, Lim GK, Hassan Z. Clitoria ternatea L. root extract ameliorated the cognitive and hippocampal long-term potentiation deficits induced by chronic cerebral hypoperfusion in the rat. J Ethnopharmacol. 2018;224:381–390. doi:10.1016/j.jep.2018.06.020
  • Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza AD, Brantner AH. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules. 2014;19(1):767–782. doi:10.3390/molecules19010767
  • Oskouie AA, Yekta RF, Tavirani MR, Kashani MS, Goshadrou F. Lavandula angustifolia effects on rat models of Alzheimer’s disease through the investigation of serum metabolic features using NMR metabolomics. Avic J Med Biotech. 2018;10(2):83.
  • Soheili M, Tavirani MR, Salami M. Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease. Iranian J Bas Med Sci. 2015;18(11):1147.
  • Rychlik M. Quantification of free coumarin and its liberation from glucosylated precursors by stable isotope dilution assays based on liquid chromatography− tandem mass spectrometric detection. J Agricult Food Chem. 2008;56(3):796–801. doi:10.1021/jf0728348
  • Rafii M, Walsh S, Little J, et al. A Phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology. 2011;76(16):1389–1394. doi:10.1212/WNL.0b013e318216eb7b
  • Calderón AI, Simithy-Williams J, Sanchez R, Espinosa A, Valdespino I, Gupta MP. Lycopodiaceae from Panama: a new source of acetylcholinesterase inhibitors. Natural Prod Res. 2013;27(4–5):500–505. doi:10.1080/14786419.2012.701217
  • Howes M-JR, Fang R, Houghton PJ. Effect of Chinese herbal medicine on Alzheimer’s disease. Internat Rev Neurobiol. 2017;135:29–56.
  • Dwivedi C, Chandrakar K, Singh V, et al. Indian herbal medicines used for treatment of dementia: an overview. Internat J Pharmacog. 2014;1(9):353–371.
  • Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol. 2008;120(1):112–117. doi:10.1016/j.jep.2008.07.039
  • Sehgal N, Gupta A, Valli RK, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proceed Nat Acad Sci. 2012;109(9):3510–3515. doi:10.1073/pnas.1112209109
  • Kim B-W, Koppula S, Park S-Y, et al. Attenuation of inflammatory-mediated neurotoxicity by Saururus chinensis extract in LPS-induced BV-2 microglia cells via regulation of NF-κB signaling and anti-oxidant properties. BMC Complement Altern Med. 2014;14:1–10. doi:10.1186/1472-6882-14-502
  • Sung SH, Kwon SH, Cho NJ, Kim YC. Hepatoprotective flavonol glycosides of Saururus chinensis herbs. Phytoth Res. 1997;11(7):500–503. doi:10.1002/(SICI)1099-1573(199711)11:7<500::AID-PTR139>3.0.CO;2-P
  • Wang B. Chemical characterization and ameliorating effect of polysaccharide from Chinese jujube on intestine oxidative injury by ischemia and reperfusion. Internat J Biolog Macromolec. 2011;48(3):386–391. doi:10.1016/j.ijbiomac.2010.12.005
  • Hosseini M, Mohammadpour T, Karami R, Rajaei Z, Reza Sadeghnia H, Soukhtanloo M. Effects of the hydro-alcoholic extract of Nigella sativa on scopolamine-induced spatial memory impairment in rats and its possible mechanism. Chin J Integ Med. 2015;21:438–444. doi:10.1007/s11655-014-1742-5
  • Khazdair MR. The protective effects of Nigella sativa and its constituents on induced neurotoxicity. J Toxicol. 2015;2015. doi:10.1155/2015/841823
  • Cascella M, Bimonte S, Barbieri A, et al. Dissecting the potential roles of nigella sativa and its constituent thymoquinone on the prevention and on the progression of Alzheimer’s disease. Front Aging Neurosci. 2018;10:16. doi:10.3389/fnagi.2018.00016
  • Choudhary S, Kumar P, Malik J. Plants and phytochemicals for Huntington’s disease. Pharmacog Rev. 2013;7(14):81. doi:10.4103/0973-7847.120505
  • Mir NT, Saleem U, Anwar F, et al. Lawsonia Inermis markedly improves cognitive functions in animal models and modulate oxidative stress markers in the brain. Medicina. 2019;55(5):192. doi:10.3390/medicina55050192
  • Wang Y-H, Du G-H. Ginsenoside Rg1 inhibits β-secretase activity in vitro and protects against Aβ-induced cytotoxicity in PC12 cells. J Asian Nat Prod Res. 2009;11(7):604–612. doi:10.1080/10286020902843152
  • Qu J, Xu N, Zhang J, Geng X, Zhang R. Panax notoginseng saponins and their applications in nervous system disorders: a narrative review. Ann Translati Med. 2020;8(22):1525–1525. doi:10.21037/atm-20-6909
  • Bäurle P, Suter A, Wormstall H. Safety and effectiveness of a traditional ginkgo fresh plant extract–results from a clinical trial. Complem Med Res. 2009;16(3):156–161. doi:10.1159/000213167
  • Isah T. Rethinking Ginkgo biloba L.: medicinal uses and conservation. Pharmacog Rev. 2015;9(18):140. doi:10.4103/0973-7847.162137
  • Tao Y, Chen L, Yan J. Traditional uses, processing methods, phytochemistry, pharmacology and quality control of Dipsacus asper Wall. ex CB Clarke: a review. J Ethnopharmacol. 2020;258:112912. doi:10.1016/j.jep.2020.112912
  • Fujiwara H, Tabuchi M, Yamaguchi T, et al. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1, 2, 3, 4, 6‐penta‐O‐galloyl‐β‐d‐glucopyranose have potent anti‐aggregation effects on Alzheimer’s amyloid β proteins in vitro and in vivo. J Neuroch. 2009;109(6):1648–1657. doi:10.1111/j.1471-4159.2009.06069.x
  • Lv J, Jia H, Jiang Y, et al. Tenuifolin, an extract derived from tenuigenin, inhibits amyloid‐β secretion in vitro. Acta Physiol. 2009;196(4):419–425. doi:10.1111/j.1748-1716.2009.01961.x
  • Yin Y, Huang L, Liu Y, et al. Effect of tanshinone on the levels of nitric oxide synthase and acetylcholinesterase in the brain of Alzheimer’s disease rat model. Clin Investigat Med;2008. E248–E257. doi:10.25011/cim.v31i5.4871
  • Wang R-N, Zhao H-C, Huang J-Y, et al. Challenges and strategies in progress of drug delivery system for traditional Chinese medicine Salviae Miltiorrhizae Radix et Rhizoma (Danshen). Chin Herbal Med. 2021;13(1):78–89. doi:10.1016/j.chmed.2020.08.001
  • Eckert GP. Traditional used plants against cognitive decline and Alzheimer disease. Front Pharmacol. 2010;1:138. doi:10.3389/fphar.2010.00138
  • Fujiwara H, Iwasaki K, Furukawa K, et al. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s β‐amyloid proteins. J Neurosci Res. 2006;84(2):427–433. doi:10.1002/jnr.20891
  • Xian Y-F, Lin Z-X, Zhao M, Mao -Q-Q, S-P I, Che C-T. Uncaria rhynchophylla ameliorates cognitive deficits induced by D-galactose in mice. Planta Med. 2011;77(18):1977–1983. doi:10.1055/s-0031-1280125
  • Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmac. 2010;127(1):26–31. doi:10.1016/j.jep.2009.09.056
  • Banerjee S, Anand U, Ghosh S, et al. Bacosides from Bacopa monnieri extract: an overview of the effects on neurological disorders. Phytoth Res. 2021;35(10):5668–5679. doi:10.1002/ptr.7203
  • Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi A, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo‐controlled trial. J Clin Pharm Therapeut. 2003;28(1):53–59. doi:10.1046/j.1365-2710.2003.00463.x
  • Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. J Tradit Complem Med. 2017;7(4):433–440. doi:10.1016/j.jtcme.2016.12.014
  • Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi A, Khani M. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psych. 2003;74(7):863–866. doi:10.1136/jnnp.74.7.863
  • Soodi M, Naghdi N, Hajimehdipoor H, Choopani S, Sahraei E. Memory-improving activity of Melissa officinalis extract in naïve and scopolamine-treated rats. Res Pharmac Sci. 2014;9(2):107.
  • Vasudevan M, Parle M. Antiamnesic potential of Murraya koenigii leaves. Phytoth Res. 2009;23(3):308–316. doi:10.1002/ptr.2620
  • Tan MA, Sharma N, An SSA. Multi-Target approach of Murraya koenigii leaves in treating neurodegenerative diseases. Pharmaceuticals. 2022;15(2):188. doi:10.3390/ph15020188
  • Kim DH, Hyun SK, Yoon BH, et al. Gluco-obtusifolin and its aglycon, obtusifolin, attenuate scopolamine-induced memory impairment. J Pharmacol Sci. 2009;111(2):110–116. doi:10.1254/jphs.08286FP
  • Kim DH, Yoon BH, Kim Y-W, et al. The seed extract of Cassia obtusifolia ameliorates learning and memory impairments induced by scopolamine or transient cerebral hypoperfusion in mice. J Pharmacol Sci. 2007;105(1):82–93. doi:10.1254/jphs.FP0061565
  • Dhanasekaran M, Holcomb LA, Hitt AR, et al. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytoth Res. 2009;23(1):14–19. doi:10.1002/ptr.2405
  • Lai CS-W, Yu M-S, Yuen W-H, K-F S, Zee S-Y, Chang R-C-C. Antagonizing β-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma lucidum. Brain Res. 2008;1190:215–224. doi:10.1016/j.brainres.2007.10.103
  • Joshi H, Parle M. Antiamnesic effects of Desmodium gangeticum in mice. Yakugaku Zasshi. 2006;126(9):795–804. doi:10.1248/yakushi.126.795
  • M-S Y, Leung SK-Y, Lai S-W, et al. Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against β-amyloid peptide neurotoxicity. Experim Gerontol. 2005;40(8–9):716–727. doi:10.1016/j.exger.2005.06.010
  • Tabuchi M, Yamaguchi T, Iizuka S, Imamura S, Ikarashi Y, Kase Y. Ameliorative effects of yokukansan, a traditional Japanese medicine, on learning and non-cognitive disturbances in the Tg2576 mouse model of Alzheimer’s disease. J Ethnoph. 2009;122(1):157–162. doi:10.1016/j.jep.2008.12.010
  • Tohda C, Tamura T, Komatsu K. Repair of amyloid β (25–35)-induced memory impairment and synaptic loss by a Kampo formula, Zokumei-to. Brain Res. 2003;990(1–2):141–147. doi:10.1016/S0006-8993(03)03449-8
  • Saxena G, Singh SP, Pal R, Singh S, Pratap R, Nath C. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochemist Behav. 2007;86(4):797–805. doi:10.1016/j.pbb.2007.03.010
  • Gharibi A, Khalili M, Kiasalari Z, Hoseinirad M. The effect of Zingiber officinalis L. on learning and memory in rats. J Bas Clin Pathophysiol. 2013;2:2013–2014.
  • Vasudevan M, Parle M. Memory enhancing activity of Anwala churna (Emblica officinalis Gaertn.): an Ayurvedic preparation. Physiol Behav. 2007;91(1):46–54. doi:10.1016/j.physbeh.2007.01.016
  • Singh H, Dhawan B. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn.(Brahmi). Indian J Pharmacol. 1997;29(5):359.
  • Sharma R, Amin H, Prajapati P, Ruknuddin G. Therapeutic Vistas of Guduchi (Tinospora cordifolia): a medico-historical memoir. J Res Educ Ind Med. 2014;20:113–128.
  • Rajakrishnan V, Viswanathan P, Rajasekharan K, Menon VP. Neuroprotective role of curcumin from Curcuma longa on ethanol‐induced brain damage. Phytoth Res. 1999;13(7):571–574. doi:10.1002/(SICI)1099-1573(199911)13:7<571::AID-PTR494>3.0.CO;2-7
  • Karkada G, Shenoy K, Halahalli H, Karanth K. Nardostachys jatamansi extract prevents chronic restraint stress-induced learning and memory deficits in a radial arm maze task. J Nat Sci, Bio Med. 2012;3(2):125. doi:10.4103/0976-9668.101879
  • Vasundhara S, Hafsa A, Rajiv G. Memory enhancing effects of Ficus carica leaves in hexane extract on interoceptive behavioral models. Asian J Pharm Clin Res. 2013;6(3):109–113.
  • Pramodinee D, Mahesh M, Niranjan D, Sankpala S. Memory enhancing activity of Cissampelos papiera in mice. Int J Pharm Sci. 2011;3:206–211.
  • Roy C, Ghosh T, Guha D. The antioxidative role of Benincasa hispida on colchicine induced experimental rat model of Alzheimer’s disease. Biogenic Amines. 2007;21(1/2):1.
  • Jyothi P, Kumara S. Central nervous system protection by Catharanthus roseus leaf extract in streptozotocin-induced diabetes in rat brain. J Pharmacog. 2012;3(2):63–66.
  • Carlini E. Plants and the central nervous system. Pharmacol Biochem Behav. 2003;75(3):501–512. doi:10.1016/S0091-3057(03)00112-6
  • Pradeep S, Prabhuswaminath SC, Reddy P, et al. Anticholinesterase activity of Areca Catechu: in vitro and in silico green synthesis approach in search for therapeutic agents against Alzheimer’s disease. Fronti Pharmacol. 2022;13:1044248. doi:10.3389/fphar.2022.1044248
  • Kashyap P, Muthusamy K, Niranjan M, Trikha S, Kumar S. Sarsasapogenin: a steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids. 2020;153:108529. doi:10.1016/j.steroids.2019.108529
  • Rai K, Murthy K, Karanth K, Nalini K, Rao M, Srinivasan K. Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Fitoterapia. 2002;73(7–8):685–689. doi:10.1016/S0367-326X(02)00249-6
  • Cambay Z, Baydas G, Tuzcu M, Bal R. Pomegranate (Punica granatum L.) flower improves learning and memory performances impaired by diabetes mellitus in rats. Acta Physiol Hung. 2011;98(4):409–420. doi:10.1556/APhysiol.98.2011.4.4
  • Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Therap. 1998;20(4):634–647. doi:10.1016/S0149-2918(98)80127-6
  • Razay G, Wilcock GK. Galantamine in Alzheimer’s disease. Exp Rev Neurotherap. 2008;8(1):9–17. doi:10.1586/14737175.8.1.9
  • Maelicke A, Hoeffle-Maas A, Ludwig J, et al. Memogain is a galantamine pro-drug having dramatically reduced adverse effects and enhanced efficacy. J Mol Neurosc. 2010;40:135–137. doi:10.1007/s12031-009-9269-5
  • Williams P, Sorribas A, Howes M-JR. Natural products as a source of Alzheimer’s drug leads. Nat Prod Rep. 2011;28(1):48–77. doi:10.1039/c0np00027b
  • Ha GT, Wong RK, Zhang Y. Huperzine a as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies. Chem Biodiv. 2011;8(7):1189–1204. doi:10.1002/cbdv.201000269
  • Nishteswar K, Joshi H, Karra RD. Role of indigenous herbs in the management of Alzheimer’s disease. Anci Sci Life. 2014;34(1):3. doi:10.4103/0257-7941.150763
  • Amin H, Sharma R. Nootropic efficacy of satvavajaya chikitsa and ayurvedic drug therapy: a comparative clinical exposition. Internat J Yoga. 2015;8(2):109. doi:10.4103/0973-6131.158473