148
Views
1
CrossRef citations to date
0
Altmetric
Review

Utilizing research into electrical double layers as a basis for the development of label-free biosensors based on nanomaterial transistors

, &
Pages 1-13 | Published online: 30 Dec 2015

References

  • Lyon LA, Musick MD, Natan MJ. Colloidal au-enhanced surface plasmon resonance immunosensing. Anal Chem. 1998;70:5177–5183.
  • Nice EC, Catimel B. Instrumental biosensors: new perspectives for the analysis of biomolecular interactions. Bioessays. 1999;21:339–352.
  • Tess ME, Cox JA. Chemical and biochemical sensors based on advances in materials chemistry. J Pharm Biomed Anal. 1999;19:55–68.
  • Brekkan E, Lundqvist A, Lundahl P. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin b and d-glucose with the human red cell glucose transporter. Biochemistry. 1996;35:12141–12145.
  • Willardson BM, Wilkins JF, Rand TA, et al. Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol. 1998;64:1006–1012.
  • Okuno J, Maehashi K, Kerman K, et al. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron. 2007;22:2377–2381.
  • Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol. 2003;21:1192–1199.
  • Cheng AKH, Ge B, Yu H-Z. Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal Chem. 2007;79:5158–5164.
  • Daniels JS, Pourmand N. Label-free impedance biosensors: opportunities and challenges. Electroanalysis. 2007;19:1239–1257.
  • Macdonald DD. Reflections on the history of electrochemical impedance spectroscopy. Electrochim Acta. 2006;51:1376–1388.
  • Minot ED, Janssens AM, Heller I, et al. Carbon nanotube biosensors: the critical role of the reference electrode. Appl Phys Lett. 2007;91:093507.
  • Kim A, Ah CS, Yu HY, et al. Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl Phys Lett. 2007;91:103901.
  • Okamoto S, Ohno Y, Maehashi K, et al. Immunosensors based on graphene field-effect transistors fabricated using antigen-binding fragment. Jpn J Appl Phys. 2012;51:06FD08.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Maehashi K, Sofue Y, Okamoto S, et al. Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sensors Actuators B: Chem. 2013;187:45–49.
  • Debye P. Dieletric properties of pure liquids. Chem Rev. 1936;19:171–182.
  • Rudikoff S, Potter M. Size differences among immunoglobulin heavy chains from phosphorylcholine-binding proteins. Proc Natl Acad Sci U S A. 1976;73:2109–2112.
  • Teillaud J, Desaymard C, Giusti A, et al. Monoclonal antibodies reveal the structural basis of antibody diversity. Science. 1983;222:721–726.
  • Stern E, Wagner R, Sigworth FJ, et al. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007;7:3405–3409.
  • Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23:1294–1301.
  • Patolsky F, Zheng G, Hayden O, et al. Electrical detection of single viruses. Proc Natl Acad Sci U S A. 2004;101:14017–14022.
  • Wang WU, Chen C, Lin K-h, et al. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc Natl Acad Sci U S A. 2005;102:3208–3212.
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510.
  • Robertson DL, Joyce GF. Selection in vitro of an rna enzyme that specifically cleaves single-stranded DNA. Nature. 1990;344:467–468.
  • Ellington AD, Szostak JW. In vitro selection of rna molecules that bind specific ligands. Nature. 1990;346:818–822.
  • O’Sullivan C. Aptasensors: the future of biosensing? Anal Bioanal Chem. 2002;372:44–48.
  • So H-M, Won K, Kim YH, et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J Am Chem Soc. 2005;127:11906–11907.
  • Maehashi K, Katsura T, Kerman K, et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem. 2007;79:782–787.
  • Ohno Y, Maehashi K, Matsumoto K. Label free biosensors based on aptamer modified graphene field effect transistors. J Am Chem Soc. 2010;132:18012–18013.
  • Maehashi K, Matsumoto K. Label-free electrical detection using carbon nanotube-based biosensors. Sensors. 2009;9:5368–5378.
  • Maehashi K, Matsumoto K, Takamura Y, et al. Aptamer-based label-free immunosensors using carbon nanotube field-effect transistors. Electroanalysis. 2009;21:1285–1290.
  • Pilz I, Schwarz E, Palm W. Small-angle x-ray studies of the fab and fc fragments from the human immunoglobulin molecule kol. Eur J Biochem. 1976;71:239–247.
  • Ng PC, Osawa Y. Preparation and characterization of the fab and F(ab′)2 fragments of an aromatase activity-suppressing monoclonal antibody. Steroids. 1997;62:776–781.
  • Kim JP, Lee BY, Hong S, et al. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal Biochem. 2008;381:193–198.
  • Li C, Curreli M, Lin H, et al. Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J Am Chem Soc. 2005;127:12484–12485.
  • Stern E, Klemic JF, Routenberg DA, et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature. 2007;445:519–522.
  • Ohno Y, Maehashi K, Yamashiro Y, et al. Electrolyte-gated graphene field-effect transistors for detecting ph and protein adsorption. Nano Lett. 2009;9:3318–3322.
  • Kim JP, Lee BY, Lee J, et al. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens Bioelectron. 2009;24:3372–3378.
  • Reyes DR, Iossifidis D, Auroux P-A, et al. Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem. 2002;74:2623–2636.
  • Manz A, Graber N, Widmer HM. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B: Chem. 1990;1:244–248.
  • Harrison DJ, Fluri K, Seiler K, et al. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science. 1993;261:895–897.
  • Hahm J-I, Lieber CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2003;4:51–54.
  • He RX, Lin P, Liu ZK, et al. Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection. Nano Lett. 2012;12:1404–1409.
  • Tsujita Y, Maehashi K, Matsumoto K, et al. Carbon nanotube amperometric chips with pneumatic micropumps. Jpn J Appl Phys. 2008;47:2064–2067.
  • Tsujita Y, Maehashi K, Matsumoto K, et al. Microfluidic and label-free multi-immunosensors based on carbon nanotube microelectrodes. Jpn J Appl Phys. 2009;48:06FJ02.
  • Chang H-K, Ishikawa FN, Zhang R, et al. Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems. ACS Nano. 2011;5:9883–9891.
  • Patolsky F, Zheng G, Lieber CM. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nature Protoc. 2006;1:1711–1724.
  • Li Z, Chen Y, Li X, et al. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2004;4:245–247.
  • Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules. Appl Phys Lett. 1992;60:2204–2206.
  • Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998;393:49–52.
  • Martel R, Schmidt T, Shea HR, et al. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett. 1998;73:2447–2449.
  • Kong J, Soh HT, Cassell AM, et al. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature. 1998;395:878–881.
  • Kaminishi D, Ozaki H, Ohno Y, et al. Air-stable n-type carbon nanotube field-effect transistors with Si3N4 passivation films fabricated by catalytic chemical vapor deposition. Appl Phys Lett. 2005;86:113115.
  • Chen RJ, Bangsaruntip S, Drouvalakis KA, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci U S A. 2003;100:4984–4989.
  • Star A, Gabriel J-CP, Bradley K, et al. Electronic detection of specific protein binding using nanotube fet devices. Nano Lett. 2003;3:459–463.
  • Gui EL, Li L-J, Zhang K, et al. DNA sensing by field-effect transistors based on networks of carbon nanotubes. J Am Chem Soc. 2007;129:14427–14432.
  • So H-M, Park D-W, Jeon E-K, et al. Detection and titer estimation of escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small. 2008;4:197–201.
  • Han S, Liu X, Zhou C. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J Am Chem Soc. 2005;127:5294–5295.
  • Kang SJ, Kocabas C, Ozel T, et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol. 2007;2:230–236.
  • Okuda S, Okamoto S, Ohno Y, et al. Horizontally aligned carbon nanotubes on a quartz substrate for chemical and biological sensing. J Phys Chem C 2012;116:19490–19495.
  • Chen RJ, Zhang Y, Wang D, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. 2001;123:3838–3839.
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–191.
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–907.
  • Bolotin K, Sikes K, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146:351–355.
  • Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308.
  • Lin Y-M, Jenkins KA, Valdes-Garcia A, et al. Operation of graphene transistors at gigahertz frequencies. Nano Lett. 2009;9:422–426.
  • Liao L, Lin YC, Bao M, et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature. 2010;467:305–308.
  • Schedin F, Geim AK, Morozov SV, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6:652–655.
  • Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature. 2005;438:197–200.
  • Sofue Y, Ohno Y, Maehashi K, et al. Highly sensitive electrical detection of sodium ions based on graphene field-effect transistors. Jpn J Appl Phys. 2011;50:06GE07.
  • Cheng Z, Li Q, Li Z, et al. Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 2010;10:1864–1868.
  • Gómez-Navarro C, Weitz RT, Bittner AM, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007;7:3499–3503.
  • Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008;8:4469–4476.
  • Mao S, Lu G, Yu K, et al. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater. 2010;22:3521–3526.
  • Ohta T, Bostwick A, Seyller T, et al. Controlling the electronic structure of bilayer graphene. Science. 2006;313:951–954.
  • Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science. 2006;312:1191–1196.
  • Ang PK, Chen W, Wee AT, et al. Solution-gated epitaxial graphene as ph sensor. J Am Chem Soc. 2008;130:14392–14393.
  • Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2008;9:30–35.
  • Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009;9:4268–4272.
  • Yu Q, Lian J, Siriponglert S, et al. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett. 2008;93:113103–113103.
  • Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314.
  • Huang Y, Dong X, Shi Y, et al. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale. 2010;2:1485–1488.
  • Kwak YH, Choi DS, Kim YN, et al. Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens Bioelectron. 2012;37:82–87.
  • Zaifuddin NM, Okamoto S, Ikuta T, et al. pH sensor based on chemical-vapor-deposition-synthesized graphene transistor array. Jpn J Appl Phys. 2013;52:06GK04.
  • Park J-U, Nam S, Lee M-S, et al. Synthesis of monolithic graphene–graphite integrated electronics. Nat Mater. 2012;11:120–125.