258
Views
2
CrossRef citations to date
0
Altmetric
Review

Enzyme-based electrochemical biosensors for food safety: a review

&
Pages 29-39 | Published online: 20 Apr 2016

References

  • Ivnitski D, Hamid IA, Atanasov P, et al. Biosensors for detection of pathogenic bacteria. Biosens Bioelectron. 1999;14:599–624.
  • Viswanathan S, Radecki J. Nanomaterials in electrochemical biosensors for food analysis. Pol J Food Nutr Sci. 2008;58:157–164.
  • Banica GF. Chemical Sensors and Biosensors: Fundamentals and Applications. Hoboken, NJ: John Wiley and Sons; 2012:576.
  • Thakur MS, Ragavan KV. Biosensor in food processing. J Food Sci Technol. 2013;50:625–641.
  • Lopez BP, Merkoci A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci Tech. 2011;22:625–639.
  • Clark CL, Lyon C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102:29–45.
  • Wang J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis. 2001;13:983–989.
  • Updike S, Hicks G. The enzyme electrode. Nature. 1967;214:986.
  • Guilbault G, Lubrano G. An enzyme electrode for the amperometric determination of glucose. Anal Chim Acta. 1973;64:439.
  • Wang J. Electrochemical glucose biosensors. Chem Rev. 2008;108:814–825.
  • Wiley J and Sons. Chemical mechanism in enzyme catalysis. A Practical Introduction to Structure, Mechanism and Data Analysis. Hoboken, NJ: Wiley J and Sons; 2000:146–150.
  • Putzbach W, Ronkainen NJ. Immobilization techniques in the fabrication of nanomaterials based electrochemical biosensor – a review. Sensors (Basel). 2013;13(4):4811–4840.
  • Degani Y, Heller A. Electrical wiring of redox enzymes. Acc Chem Res. 1992;23:128–134.
  • Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta. 1985;811:265–322.
  • Liu J, Wang J. Improved design for the glucose biosensor. Food Tech Biotech. 2001;39:55–58.
  • Yoo EH, Lee SY. Glucose biosensors: an overview of use in clinical practice. Sensors (Basel). 2010;10:4558–4576.
  • Zhu Z, Gancedo L, Flewitt AJ, et al. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors (Basel). 2012;12:5996–6022.
  • Albery W, Bartlett PN, Craston DH. Amperometric enzyme electrodes part-II Conducting salts as electrode material for the oxidation of glucose oxidase. J Electroanal Chem. 1985:194–223.
  • Palmisano F, Zambonin PG, Centonze D, et al. A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodimethane composite. Anal Chem. 2002;74:5913.
  • Khan GF, Ohwa M, Wernet W. Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. Anal Chem. 1996;68:2939–2945.
  • Bao SJ, Li CM, Zang JF, et al. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater. 2008;18:591–599.
  • Koyun A, Ahlatcioglu E, Ipek YK.. Biosensors and their principles. In: Kara S, editor. A Roadmap of Biomedical Engineers and Milestones. Rijeka: Intech; 2012:115–142.
  • Kissinger P, Heineman WR. Laboratory Techniques in Electroanalytical Chemistry. 2nd ed. New York, NY: Marcel Dekker; 1996.
  • Allen BJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed. Philadelphia, PA: Wiley; 2002.
  • Zoski CG. Handbook of Electrochemistry. Philadelphia, PA: Elsevier Science; 2007.
  • Trivedi UB, Lakshminarayanaa D, Kothari IL, et al. Amperometric fructose biosensor based on fructose dehydrogenase enzyme. Sensor Actuat B Chem. 2009;136:45–51.
  • Hammerle M, Hilgert K, Horn MA, et al. Analysis of volatile alcohols in apple juices by an electrochemical biosensor measuring in the headspace above the liquid. Sensor Actuat B Chem. 2011;158:313–318.
  • Lata S, Batra B, Singala N, et al. Construction of amperometric L-amino acid biosensor based on L-amino acid oxidase immobilized onto ZnONPs/c-MWCNT/PANI/AuE. Sensor Actuat B Chem. 2013;188:1080–1088.
  • Liang B, Liang L, Tang XJ, et al. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens Bioelectron. 2013;45:19–24.
  • Eggins BR. Sensing elements. Chemical Sensors and Biosensors. Chichester: Wiley; 2010:98–102.
  • Sharma H, Agarwal M, Goswami M, et al. Biosensors: tool for food borne pathogen detection. Vet World. 2013;6:968–973.
  • Willis JR, Briney BS, DeLuca SL, et al. Human germline antibody gene segments encode polyspecific antibodies. PLoS Comput Biol. 2013;9:e1003045.
  • Marazuela M, Bondi MM. Fiber-optic biosensors – an overview. Anal Bioanal Chem. 2002;372:664–682.
  • Palchetti I, Mascini M. Biosensor technology: a brief history. Sensors and Microsystems. Berlin: Springer; 2010;54:15–23.
  • Farabullini F, Lucarelli F, Palchetti I, et al. Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron. 2007;22:1544–1549.
  • Gier MJL, Scholin CA, Fell JW, et al. An electrochemical RNA hybridization assay for detection of the fecal indicator bacterium Escherichia coli. Mar Pollut Bull. 2005;50:1251–1261.
  • Liao JC, Mastali M, Gau V, et al. Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J Clin Microbiol. 2006;44:561–570.
  • Castro RM, Alvarez NDLS, Castanon MJL, et al. Structured nucleic acid probes for electrochemical devices. Electroanalysis. 2009;21:2077–2090.
  • Yeung SW, Lee TMH, Cai H, et al. A DNA biochip for on-the-spot multiplexed pathogen identification. Nucl Acids Res. 2006;34:e118.
  • Velusamy V, Arshak K, Korostynska O, et al. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotech Adv. 2010;28:232–254.
  • Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev. 2000;100:2495–2504.
  • Singh A, Glass N, Tolba M, et al. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens Bioelectron. 2009;24:3645–3651.
  • Balasubramanian S, Sorokulova IB, Vodyanoy VJ, et al. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus – a surface plasmon resonance spectroscopic study. Biosens Bioelectron. 2007;22:948–955.
  • Huang S, Li SQ, Yang H, et al. Optimization of phage-based magnetoelastic biosensor performance. Sens Transducers J. 2008;3:87–96.
  • Xie F, Yang H, Li S, et al. Amorphous magnetoelastic sensors for the detection of biological agents. Intermetallics. 2009;17:270–273.
  • Arora P, Sindhu A, Dilbaghi N, et al. Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron. 2011;28:1–12.
  • Tawil N, Sacher E, Mandeville R, et al. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens Bioelectron. 2012;37:24–29.
  • Wang Y, Knoll W, Dostalek J. Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. Anal Chem. 2012;84:8345–8350.
  • Leonard P, Hearty S, Quinn J, et al. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron. 2004;19:1331–1335.
  • Bokken G, Corbee RJ, Knapen FV, et al. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiol Lett. 2003;222:75–82.
  • Meeusen CA, Alocilja EC, Osburn WN. Detection of E. coli O157: H7 using a miniaturized surface plasmon resonance biosensor. Trans ASAE. 2005;48:2409–2416.
  • Waswa J, Irudayaraj J, Roy CD. Direct detection of E. Coli O157: H7 in selected food systems by a surface plasmon resonance biosensor. LWT Food Sci Technol. 2007;40:187–192.
  • Palchetti I, Mascini M. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem. 2008;391:455–471.
  • Lazcka O, Campo FJD, Munoz FX. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron. 2007;22:1205–1217.
  • Ghindilis AL, Atanasov P, Wilkins P, et al. Immunosensors: electrochemical sensing and other engineering approaches. Biosens Bioelectron. 1998;13:113–131.
  • Zhang X, Ju H, Wang J. Electrochemical Sensors, Biosensors and Their Biomedical Applications. Waltham, MA: Academic Press is an imprint of Elsevier; 2008.
  • Kong T, Chen Y, Ye Y, et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sensor Actuat B Chem. 2009;138:344–350.
  • Caib X, Gao X, Wang L, et al. A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sensor Actuat B Chem. 2013;181:558–575.
  • Arya SK, Datta M, Malhotra BD. Recent advances in cholesterol biosensor. Biosens Bioelectron. 2008;23:1083–1100.
  • Lee YJ, Park JY. Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles. Biosens Bioelectron. 2010;26:1353–1358.
  • Yanping L, Yunfei B, Gaoyi H, et al. Porous-reduced graphene oxide for fabricating an amperometric acetylcholinesterase biosensor. Sensor Actuat B Chem. 2013;185:706–712.
  • Che Y, Li Y, Slavik M. Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosen Bioelectron. 2001;16:791–797.
  • Campas M, Marty JL. Highly sensitive amperometric immunosensors for microcystin detection in algae. Biosen Bioelectron. 2007;22:1034–1040.
  • Micheli L, Radoi A, Guarrina R, et al. Disposable immunosensor for the determination of domoic acid in shellfish. Biosen Bioelectron. 2004;20:190–196.
  • Kania M, Kreuzer M, Moore E, et al. Development of polyclonal antibodies against domoic acid for their use in electrochemical biosensors. Anal Lett. 2003;36:1851–1863.
  • Jesus CGD, Lima D, Santos V, et al. Glucose biosensor based on the highly efficient immobilization of glucose oxidase on layer- by-layer films of silsesquioxane polyelectrolyte. Sensor Actuat B Chem. 2013;186:44–51.
  • Bergveld P. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens Actuat B Chem. 2003;88:1–20.
  • Kumar H, Rani R. Development of biosensors for the detection of biological warfare agents: its issues and challenges. Sci Prog. 2013;96:294–308.
  • Singh S, Solanki PR, Malhotra BD. Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor. Anal Chim Acta. 2005;568:126–132.
  • Dill K, Song JH, Blomdahl JA, et al. Rapid sensitive and specific detection of whole cells and spores using the light-addressable potentiometric sensor. J Biochem Biophys Methods. 1997;34:161–166.
  • Ahuja T, Mir IA, Kumar D, Rajesh N. Potentiometric urea biosensor based on BSA embedded surface modifiedpolypyrrole film. Sens Actuat B Chem. 2008;134:140–145.
  • Rogers KR, Mascini M. Biosensors for field analytical monitoring. Field Analyt Chem Tech. 1998;2:317–331.
  • Invitski D, Hamid IA, Atanasov P, et al. Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis. 2002;12:317–325.
  • Silley P, Forsythe S. Impedance microbiology – a rapid change for microbiologists. J Appl Bacteriol. 1996;80:233–243.
  • Milner KR, Brown AP, Allsopp DWE, et al. Dielectrophoretic classification of bacteria using differential impedance measurements. Electron Lett. 1998;34:66–68.
  • Tahir ZM, Alocilja EC. Disposable biosensor for pathogen detection in fresh produce samples. Biosyst Eng. 2004;88:145–151.
  • Huang W, Taylor S, Fu K, et al. Attaching proteins to carbon nanotubes via diimideactivated amidation. Nano Lett. 2000;2:311–314.
  • Krishna V, Pumprueg S, Lee SH, et al. Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes. Proc Safety Environ Prot. 2005;83:393–397.
  • Ali MA, Eldin TA, Moghazy ME, et al. Detection of E. coli O157:H7 in feed samples using gold nanoparticles sensor. Int J Curr Microbiol App Sci. 2014;3(6):697–708.
  • Brewster JD, Mazenko RS. Filtration capture and immunoelectrochemical detection for rapid assay of Escherichia coli O157:H7. J Immun Methods. 1998;211:1–8.
  • Xiang C, Li R, Adhikari B, et al. Sensitive electrochemical detection of Salmonella with chitosan–gold nanoparticles composite film. Talanta. 2015;140:122–127.
  • Sun W, Wang X, Wang W, et al. Electrochemical DNA sensor for Staphylococcus aureus nuc gene sequence with zirconia and graphene modified electrode. J Solid State Electrochem. 2015;19:2431–2438.
  • Girousi ST, Pantazaki AA, Voulgaropoulos AN. Mitochondria-based amperometric biosensor for the determination of L-glutamic acid. Electroanal. 2001;13:243–245.
  • Girousi ST, Apostolidou CD, Pantazaki AA, et al. Mitochondria-based amperometric biosensor for the determination of L-succinic acid. Analyt Lett. 2001;34:1079–1086.
  • Xing X, Liu S, Yu J, et al. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosen Bioelectron. 2012;31:277–283.
  • Gomathi P, Kim MK, Park JJ, et al. Multiwalled carbon nanotubes grafted chitosan nanobiocomposite: a prosperous functional nanomaterials for glucose biosensor application. Sens Actuat B Chem. 2011;155:897–902.
  • Cherevko S, Chung CH. The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta. 2010;80:1371–1377.
  • Gomes SASS, Nogueira JMF, Rebelo MJF. An amperometric biosensor for polyphenolic compounds in red wine. Biosen Bioelectron. 2004;20:1211–1216.
  • Chouteau C, Dzyadevych S, Durrieu C, et al. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens Bioelectron. 2005;21:273–281.
  • Zhang X, Geng P, Liu H, et al. Development of an electrochemical immunoassay for rapid detection of E. coli using anodic stripping voltammetry based on Cu@Au nanoparticles as antibody labels. Biosens Bioelectron. 2009;24:2155–2159.
  • Karasinski J, White L, Zhang Y, et al. Detection and identification of bacteria using antibiotic susceptibility and a multi-array electrochemical sensor with pattern recognition. Biosens Bioelectron. 2007;22:2643–2649.
  • Dill K, Stanker LH, Young CR. Detection of salmonella in poultry using a silicon chip-based biosensor. J Biochem Biophys Methods. 1999;41:61–67.
  • Crowley EL, Sullivan CKO, Guilbault GG. Increasing the sensitivity of Listeria monocytogenes assays: evaluation using ELISA and amperometric detection. Analyst. 1999;124:295–299.