332
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent progress in the design and clinical development of electronic-nose technologies

Pages 15-27 | Published online: 22 Jan 2016

References

  • Lourenço C, Turner C. Breath analysis in disease diagnosis: methodological considerations and applications. Metabolites. 2014;4:465–498.
  • Smith D, Španel P. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath. Int Rev Phys Chem. 1996;15:231–271.
  • Jordan A, Hansel A, Holzinger R, Lindinger W. Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer reaction mass spectrometry (PTR-MS). Int J Mass Spectrom. 1995;148:L1–L3.
  • Phillips M, Gleeson K, Hughes J, et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet. 1999;353:1930–1933.
  • Lacy Costello B, Amann A, Al-Kateb H, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014;8:1–29.
  • Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. Sensors. 2011;11:1105–1176.
  • Wilson AD.. Future applications of electronic-nose technologies in healthcare and biomedicine. In: Akyar I, editor. Wide Spectra of Quality Control. Rijeka: InTech; 2011:267–290.
  • Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9:5099–5148.
  • Wilson AD, Lester DG, Oberle CS. Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes. Phytopathology. 2004;94:419–431.
  • Kybert NJ, Egan L, Waldman RZ, et al. Analysis of sweat simulant mixtures using multiplexed arrays of DNA-carbon nanotube vapor sensors. J Forensic Sci Criminol. 2014;1:S102.
  • Wilson AD. Electronic-nose applications in forensic science and for analysis of volatile biomarkers in the human breath. J Forensic Sci Criminol. 2014;1:S103.
  • Casey V, Cleary J, Arcy GD, McMonagle JB. Calorimetric combustible gas sensor based on a planar thermopile array: fabrication, characterisation, and gas response. Sensor Actuat B-Chem, 2013;96:114–123.
  • Kirchner P, Oberländer J, Friedrich P, et al. Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry. Sensor Actuat B-Chem. 2012;170:60–66.
  • Ervina MH, Millera BS, Hanrahana B, Mailly B, Palacios T. A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods. Electrochim Acta. 2012;65:37–43.
  • Kang H, Lim S, Park N, Chun KY, Baik S. Improving the sensitivity of carbon nanotube sensors by benzene functionalization. Sensor Actuat B-Chem. 2010;147:316–321.
  • Zheng J, Zhang QQ, He XC, Gao MJ, Ma XF, Li G. Nanocomposites of carbon nanotube (CNTs)/CuO with high sensitivity to organic volatiles at room temperature. Proc Engin. 2012;36:235–245.
  • Hannon A, Lu Y, Li J, Meyyappan M. Room temperature carbon nanotube based sensor for carbon monoxide detection. J Sens Sens Syst. 2014;3:349–354.
  • Lee J, Kim WD, Lim H. Facile fabrication of conducting polymer nanowire based field effect transistor with controlled shape and position. Microelectron Engin. 2012;98:382–385.
  • Vaschetto ME, Monkman AP, Springborg M. First-principle studies of some conducting polymers: PPP, PPy, PPV, PPyV, and PANI. J Mol Struct. 1999;468:181–191.
  • Luo C, Chakraborty A. Effects of dimensions on the sensitivity of a conducting polymer microwire sensor. Microelectron J. 2009;40:912–920.
  • Zohora SE, Khan AM, Srivastava AK, Hundewale N. Chemical sensors employed in electronic noses: a review. Int J Soft Comput Engin. 2013;3:2231–2307.
  • Feng W, Hettiarachchi R, Sato S, et al. Advantages of silicon nanowire metal-oxide-semiconductor field-effect transistors over planar ones in noise properties. Jpn J Appl Phys. 2012;51:04DC06.
  • Oprea A, Bârsan N, Weimar U. Characterization of granular metal oxide semiconductor gas sensitive layers by using Hall effect based approaches. J Phys D: Appl Phys. 2007;40:7217–7237.
  • Albert KJ, Lewis NS, Cross reactive chemical sensor arrays. Chem Rev. 2000;100:2595–2626.
  • Gabriele ML, Wollstein G, Ishikawa H, et al. Three dimensional optical coherence tomography imaging: advantages and advances. Progr Retin Eye Res. 2010;29:556–579.
  • Blumentritt M, Melhorn K, Flachsbarth J, Kroener M, Kowalsky W, Johannes HH. A novel fabrication method of fiber-optical planar transmission sensors for monitoring pH in concrete structures. Sensor Actuat B-Chem. 2008;131:504–508.
  • Walt DR, Dikenson T, White J, et al. Optical sensor arrays for odor recognition. Biosens Bioelectron. 1998;13:697–699.
  • Smith AL, Shirazi HM. Principles of quartz crystal microbalance/heat conduction calorimetry: measurement of the sorption enthalpy of hydrogen in palladium. Thermochim Acta. 2005;432:202–211.
  • Pejcic B, Crookea E, Doherty CM, et al. The impact of water and hydrocarbon concentration on the sensitivity of a polymer-based quartz crystal microbalance sensor for organic compounds. Analyt Chim Acta. 2011;703:70–79.
  • Pejcic B, Barton C, Crooke E, Eadington P, Jee E, Ross A. Hydrocarbon sensing. Part 1: Some important aspects about sensitivity of a polymer-coated quartz crystal microbalance in the aqueous phase. Sensor Actuat B-Chem. 2009;135:436–443.
  • Xiea G, Suna P, Yana X, Dua X, Jianga Y. Fabrication of methane gas sensor by layer-by-layer self-assembly of polyaniline/PdO ultrathin films on quartz crystal microbalance. Sensor Actuat B-Chem. 2010;145:373–377.
  • Lai FD, Huang HM. Fabrication of high frequency and low-cost surface-acoustic wave filters using near field phase shift photolithography. Microelectron Engin. 2006;83:1407–1409.
  • Krishnamoorthy S, Iliadis AA. Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100) Si substrates. Solid-State Electron. 2008;52:1710–1716.
  • Fan L, Ge H, Zhang SY, Zhang H, Zhu J. Optimization of sensitivity induced by surface conductivity and adsorbed mass in surface acoustic wave gas sensors. Sensor Actuat B-Chem. 2012;161:114–123.
  • Wilson AD. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites. 2015;5:140–163.
  • Wilson AD. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors. 2013;13:2295–2348.
  • Bahadoran M, Noorden AFA, Chaudhary K, et al. Modeling and analysis of a microresonating biosensor for detection of Salmonella bacteria in human blood. Sensors. 2014;14:12885–12899.
  • Gikunoo E, Abera A, Woldesenbet E. A novel carbon nanofibers grown on glass microballoons immunosensor: a tool for early diagnosis of malaria. Sensors. 2014;14:14686–14699.
  • Phillips M, Beatty JD, Cataneo RN, et al. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms. PLoS ONE. 2014;9:e90226.
  • de Meij TG, Larbi IB, van der Schee MP, et al. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker analysis: proof of principle study. Int J Cancer. 2014;134:1132–1138.
  • Yusuf N, Zakaria A, Omar MI, et al. In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology. BMC Bioinformatics. 2015;16:158–169.
  • Bruno DL, Haroution A, Magda CC, Radu I. Smell, lung cancer, electronic nose and trained dogs. J Lung Pulm Respir Res. 2014;1(2):00011.
  • Montuschi, P Mores N, Trové A, Mondino C, Barnes PJ. The electronic nose in respiratory medicine. Respiration. 2013;85:72–84.
  • Chilo J, Horvath G, Lindblad T, Olsson R, Redeby J, Roeraade J. A flexible electronic nose for ovarian carcinoma diagnosis in real time. Proceedings of the Real Time Conference 16th IEEE-NPSS; May 10–15, 2009; Beijing, China. New York: IEEE; 2009.
  • Roine A, Veskimäe E, Tuokko A, et al. Detection of prostate cancer by an electronic nose: a proof of principle study. J Urol. 2014;192(1):230–235.
  • Greulich T, Hattesohl A, Grabisch, A, et al. Detection of obstructive sleep apnoea by an electronic nose. Eur Respir J. 2013;42:145–155.
  • Roine A, Saviauk T, Kumpulainen P, et al. Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: a proof-of-principle study. PLoS ONE, 2014;9:e114279.
  • Tharsika T, Haseeb ASMA, Akbar SA, Sabri MFM, Hoong WY. Enhanced ethanol gas sensing properties of SnO2-core/ZnO-shell nanostructures. Sensors. 2014;14:14586–14600.
  • Voss A, Witt K, Kaschowitz T, et al. Detecting cannabis use on the human skin surface via an electronic nose system. Sensors. 2014;14:13256–13272.
  • Zhao X, Cai B, Tang Q, Tong Y, Liu Y. One-dimensional nanostructure field-effect sensors for gas detection. Sensors. 2014;14:13999–14020.
  • Essiet IO. Diagnosis of kidney failure by analysis of the concentration of ammonia in exhaled breath. J Emerg Trends Eng Appl Sci. 2013;4(6):859–862.
  • Wongchoosuk C, Lutz M, Kerdcharoen T. Detection and classification of human body odor using an electronic nose. Sensors. 2009;9:7234–7249.
  • Clausen I, Glott T. Development of clinically relevant implantable pressure sensors: perspectives and challenges. Sensors. 2014;14:17686–17702.
  • Rodríguez-Sevilla E, Ramírez-Silva M-T, Romero-Romo M, Ibarra-Escutia P, Palomar-Pardavé M. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors. Sensors. 2014;14:14423–14439.
  • Alqasaimeh M, Heng LY, Ahmad M, Raj AS, Ling TL. A large response range reflectometric urea biosensor made from silica-gel nanoparticles. Sensors. 2014;14:13186–13209.
  • Ismaiel AA, Kheireddine M, Yusoff R. A new electrochemical sensor based on task-specific ionic liquids-modified palm shell activated carbon for the determination of mercury in water samples. Sensors. 2014;14:13102–13113.
  • Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43:1423–1449.
  • Smith D, Španel P. The challenge of breath analysis for clinical diagnosis and therapeutic monitoring. Analyst. 2007;132:390–396.
  • Chapman EA, Thomas, PS, Stone E, Lewis, C, Yates, DH. A breath test for malignant mesothelioma using an electronic nose. Eur Respir J. 2012;40:448–454.
  • Dragonieri S, Schot R, Mertens BJ, et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol. 2007;120:856–862.
  • Montuschi P, Santonico M, Mondino C, et al. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest. 2010;137:790–796.
  • Fens N, Zwinderman AH, van der Schee MP, et al. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med. 2009;180:1076–1082.
  • Fens N, Roldaan AC, van der Schee MP, et al. External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin Exp Allergy. 2011;41:1371–1378.
  • Timms C, Thomas PS, Yates DH. Detection of gastro-oesophageal reflux disease (GORD) in patients with obstructive lung disease using exhaled breath profiling. J Breath Res. 2012;6:016003.
  • Di Natale C, Macagnano A, Martinelli E, et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron. 2003;18:1209–1218.
  • Machado RF, Laskowski D, Deffenderfer O, et al. Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med. 2005;171:1286–1291.
  • Mazzone PJ, Hammel J, Dweik R, et al. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax. 2007;62:565–568.
  • D’Amico A, Pennazza G, Santonico M, et al. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer. 2010;68:170–176.
  • Mazzone PJ, Wang XF, Xu Y, et al. Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. J Thorac Oncol. 2012;7:137–142.
  • Hattesohl AD, Jorres RA, Dressel H, et al. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology. 2011:16:1258–1264.
  • Dragonieri S, Annema JT, Schot R, et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer. 2009;64:166–170.
  • Tanaka M, Anguri H, Nonaka A, et al. Clinical assessment of oral malodor by the electronic nose system. J Dent Res. 2004;83:317–321.
  • de Heer K, van der Schee MP, Zwinderman K, et al. Invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: a proof-of-principle study. J Clin Microbiol. 2013;51:1490–1495.
  • de Gennaro G, Dragonieri S, Longobardi F, et al. Chemical characterization of exhaled breath to differentiate between patients with malignant pleural mesothelioma from subjects with similar professional asbestos exposure. Anal Bioanal Chem. 2010;398:3043–3050.
  • Hanson CWIII, Thaler ER. Electronic nose prediction of a clinical pneumonia score: biosensors and microbes. Anesthesiology. 2005;102:63–68.
  • Pavlou A, Magan N, Jones J, Brown J, Klatser P, Turner A. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens Bioelectron. 2004;20:538–544.
  • Fend R, Kolk AHJ, Bessant C, Buijtels P, Klatser PR, Woodman AC. Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J Clin Microbiol. 2006;44:2039–2045.
  • Phillips M, Basa-Dalay V, Blais J, et al. Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis. 2012;92:314–320.
  • Lai SY, Deffenderfer OF, Hanson W, Phillips MP, Thaler ER. Identification of upper respiratory bacterial pathogens with the electronic nose. Laryngoscope. 2002;112:975–979.
  • Hockstein NG, Thaler ER, Torigian D, Miller WT Jr, Deffenderfer O, Hanson CW. Diagnosis of pneumonia with an electronic nose: correlation of vapor signature with chest computed tomography scan findings. Laryngoscope. 2004;114:1701–1705.
  • Hockstein NG, Thaler ER, Lin Y, Lee DD, Hanson CW. Correlation of pneumonia score with electronic nose signature: a prospective study. Ann Otol Rhinol Laryngol. 2005;114:504–508.
  • Baxter CG, Bishop P, Low SE, Baiden-Amissah K, Denning DW. Pulmonary aspergillosis: an alternative diagnosis to lung cancer after positive [18F]FDG positron emission tomography. Thorax. 2011;66:638–640.
  • Gerritsen MG, Brinkman P, de Heer K, et al. Detection of invasive aspergillosis by an electronic nose platform: Preliminary data in a validation cohort. Eur Respir J. 2014;44:S58.
  • Joensen O, Paff T, Haarman EG, et al. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections. PLoS ONE. 2014;9:e115584.
  • Bos LDJ, Schultz MJ, Sterk, PJ. Exhaled breath profiling for diagnosing acute respiratory distress syndrome. BMC Pulm Med. 2014;14:72.
  • Begum S, Barua S, Ahmed MU. Physiological sensor signals classification for healthcare using sensor data fusion and case-based reasoning. Sensors. 2014;14:11770–11785.
  • Adiguzel Y, Kulah H. CMOS cell sensors for point-of-care diagnostics. Sensors. 2012;12:10042–10066.
  • von Lode P. Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin Biochem. 2005;38:591–606.
  • Barrettino D. Design considerations and recent advances in CMOS-based microsystems for point-of-care clinical diagnostics. Proceedings of the IEEE International Symposium on Circuits and Systems; May 21–24, 2006; Island of Kos, Greece. New York: IEEE; 2006:4359–4362.
  • Li CM, Dong H, Cao X, Luong JHT, Zhang X. Implantable electrochemical sensors for biomedical and clinical applications: progress, problems, and future possibilities. Curr Med Chem. 2007;14:1–23.
  • Wang Y, Xu H, Zhang J, Li G. Electrochemical sensors for clinic analysis. Sensors. 2008;8:2043–2081.
  • Bunyakul N, Baeumner AJ. Combining electrochemical sensors with miniaturized sample preparation for rapid detection in clinical samples. Sensors. 2015;15:547–564.
  • Lai RY, Plaxco KW, Heeger AJ. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem. 2007;79:229–233.
  • Chen CY, Chang CC, Yu C, Lin CW. Clinical application of surface plasmon resonance-based biosensors for fetal fibronectin detection. Sensors. 2012;12:3879–3890.
  • Nguyen HH, Park J, Kang S, Kim N. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors. 2015;15:10481–10510.
  • Kim M, Park K, Jeong EJ, Shin YB, Chung BH. Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein. Anal Biochem. 2006;351:298–304.
  • Madeira A, Vikeved E, Nilsson A, Sjögren B, Andrén PE, Svenningsson P. Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry. Curr Protoc Protein Sci. 2011;65:19.21.1–19.21.9.
  • Majka J, Speck C. Analysis of protein-DNA interactions using surface plasmon resonance. Adv Biochem Eng Biotechnol. 2007;104:13–36.
  • Teh HF, Peh WYX, Su X, Thomsen JS. Characterization of protein–DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry. 2007;46:2127–2135.
  • Fong CC, Lai WP, Leung YC, Lo SCL, Wong MS, Yang M. Study of substrate-enzyme interaction between immobilized pyridoxamine and recombinant porcine pyridoxal kinase using surface plasmon resonance biosensor. Biochim Biophys Acta. 2002;1596:95–107.
  • Geitmann M, Danielson UH. Studies of substrate-induced conformational changes in human cytomegalovirus protease using optical biosensor technology. Anal Biochem. 2004;332:203–214.
  • Salamon Z, Cowell S, Varga E, Yamamura HI, Hruby VJ, Tollin G. Plasmon resonance studies of agonist/antagonist binding to the human delta-opioid receptor: new structural insights into receptor-ligand interactions. Biophys J. 2000;79:2463–2474.
  • Rich RL, Hoth LR, Geoghegan KF, et al. Kinetic analysis of estrogen receptor/ligand interactions. Proc Natl Acad Sci U S A. 2002;99:8562–8567.
  • Baron OL, Pauron D, Antipolis S. Protein-lipid interaction analysis by surface plasmon resonance (SPR). Bio-Protocol. 2014;4:1–8.
  • Erb EM, Chen X, Allen S, et al. Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Anal Biochem. 2000;280:29–35.
  • Beccati D, Halkes KM, Batema GD, et al. SPR studies of carbohydrate-protein interactions: signal enhancement of low-molecular-mass analytes by organoplatinum(II)-labeling. Chembiochem. 2005;6:1196–1203.
  • Zhang H, Yang L, Zhou B, et al. Investigation of biological cell-protein interactions using SPR sensor through laser scanning confocal imaging-surface plasmon resonance system. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:381–386.
  • Besenicar M, Macek P, Lakey JH, Anderluh G. Surface plasmon resonance in protein-membrane interactions. Chem Phys Lipids. 2006;141:169–178.
  • Miyoshi H, Suehiro N, Tomoo K, et al. Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors. Biochimie. 2006;88:329–340.
  • Zhang J, Sun Y, Xu B, et al. A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens Bioelectron. 2013;45:230–236.
  • Cittadini M, Bersani M, Perrozzi F, Ottaviano L, Wlodarski W, Martucci A. Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon N Y, 2014;69:452–459.
  • Wu L, Chu HS, Koh WS, Li EP. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express. 2010;18:14395–14400.
  • Sriram M, Zong K, Vivekchand SRC, Gooding JJ. Single nanoparticle plasmonic sensors. Sensors. 2015;15:25774–25792.
  • Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS. Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev. 2013;65:1933–1950.
  • Landry MP, Kruss S, Nelson JT, et al. Experimental tools to study molecular recognition within the nanoparticle corona. Sensors. 2014;14:16196–16211.
  • Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 2003;3:727–730.
  • Tisch U, Haick H. Arrays of nanomaterial-based sensors for breath testing. In: Amann A, Smith D, editors. Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine. Amsterdam: Elsevier; 2013:301–323.
  • Barash O, Peled N, Hirsch FR, Haick H. Sniffing the unique “odor print” of non-small-cell lung cancer with gold nanoparticles. Small. 2009;5:2618–2624.
  • Bashouti MY, Sardashti K, Schmitt SW, et al. Oxide-free hybrid silicon nanowires: from fundamentals to applied nanotechnology. Progr Surface Sci. 2013;88:39–60.
  • Barash O, Peled N, Tisch U, Bunn Jr PA, Hirsch FR, Haick H. Classification of lung cancer histology by gold nanoparticle sensors. Nanomed Nanotech Biol Med. 2012;8:580–589.
  • Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103:542–551.
  • Tisch U, Billan S, Ilouze M, Phillips M, Peled N, Haick, H. Volatile organic compounds in the exhaled breath as biomarkers for the early detection and screening of lung cancer. CML Lung Cancer. 2012;5:107–117.
  • Patolsky F, Zheng G, Lieber CM. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nature Protoc. 2006;1:1711–1724.
  • Zheng G, Lieber CM. Nanowire biosensors for label-free, real-time, ultrasensitive protein detection. Methods Mol Biol. 2011;790:223–237.
  • Lieber CM. Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 2011;36:1052–1063.
  • Mulchandani A, Myung NV. Conducting polymer nanowires-based label-free biosensors. Curr Opin Biotech. 2011;22:502–508.
  • Yoon H, Ko S, Jang J. Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection. J Phys Chem. 2008;112:9992–9997.
  • Arter JA, Taggart DK, McIntire TM, Penner RM, Weiss GA. Virus-PEDOT nanowires for biosensing. Nano Lett. 2010;10:4858–4862.
  • Kotnala A, Gordon R. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. Nano Lett. 2014;14:853–856.
  • Pang Y, Gordon R. Optical trapping of a single protein. Nano Lett. 2012;12:402–406.
  • Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T. Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem. 2008;77:51–76.
  • Fiorentino F, Valera JL, Merino JL, Cosio BG. The electronic nose arises into the 21st century. EMJ Respir. 2015;3:12–17.
  • Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108:705–711.
  • Turner A, Magan N. Electronic noses and disease diagnostics. Nat Rev Microbiol. 2004;2:161–166.
  • Baldwin EA, Bai J, Plotto A, Dea S. Electronic noses and tongues: applications for the food and pharmaceutical industries. Sensors. 2011;11:4744–4766.
  • Deisingh AK, Stone DC, Thompson M. Applications of electronic noses and tongues in food analysis. Int J Food Sci Technol. 2004;39:587–604.
  • Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–187.
  • D’Amico A, Di Natale C, Paolesse R, et al. Olfactory systems for medical applications. Sensor Actuat B-Chem. 2008;130:458–465.
  • Bikov A, Hernadi M, Korosi BZ, et al. Expiratory flow rate, breath hold and anatomic dead space influence electronic nose ability to detect lung cancer. BMC Pulm Med. 2014;14:202.
  • Pereira J, Porto-Figueira P, Cavaco C, et al. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites. 2014;5:3–55.
  • Scarlata S, Pennazza G, Santonico M, Pedone C. Exhaled breath analysis by electronic nose in respiratory diseases. Expert Rev Mol Diagn. 2015;15:933–956.
  • Yang MT, Huang SY. Appearance-based multimodal human tracking and identification for healthcare in the digital home. Sensors. 2014;14:14253–14277.
  • Cho SH. Unravel the secret of olfaction. Hanyang Med Rev. 2014;34:97–99.
  • Li S. Recent developments in human odor detection technologies. J Forensic Sci Criminol. 2014;1:S104.
  • Helmons PJ, Wargel LN, Daniels CE. Effect of bar-code-assisted medication administration on medication administration errors and accuracy in multiple patient care areas. Am J Health Syst Pharm. 2009;66:1202–1210.
  • Henneman EA, Roche JP, Fisher DL, et al. Error identification and recovery by student nurses using human patient simulation: opportunity to improve patient safety. Appl Nursing Res. 2010;23:11–21.
  • Wilson AD. Advanced methods for teaching electronic-nose technologies to diagnosticians and clinical laboratory technicians. Proc Soc Behav Sci. 2012;46:4544–4554.