37
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Three Liquid-Liquid Phase Separation-Related Genes Associated with Prognosis in Glioma

, , , , &
Pages 171-181 | Received 25 Sep 2023, Accepted 16 Mar 2024, Published online: 22 Apr 2024

References

  • Peng Q, Wang L, Qin Z, et al. Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression. J Virol. 2020;94(7). doi:10.1128/JVI.01771-19
  • Bracha D, Walls MT, Brangwynne CP. Probing and engineering liquid-phase organelles. Nat Biotechnol. 2019;37(12):1435–1445. doi:10.1038/s41587-019-0341-6
  • Lu B, Zou C, Yang M, et al. Pharmacological Inhibition of Core Regulatory Circuitry Liquid-liquid Phase Separation Suppresses Metastasis and Chemoresistance in Osteosarcoma. Adv Sci (Weinh). 2021;8(20):56.
  • Liu J, Liu ZX, Li JJ, et al. The Macrophage-Associated LncRNA MALR Facilitates ILF3 Liquid-Liquid Phase Separation to Promote HIF1α Signaling in Esophageal Cancer. Cancer Res. 2023;83(9):1476–1489. doi:10.1158/0008-5472.CAN-22-1922
  • Zbinden A, Pérez-Berlanga M, De Rossi P, Polymenidou M. Phase Separation and Neurodegenerative Diseases: a Disturbance in the Force. Dev Cell. 2020;55(1):45–68. doi:10.1016/j.devcel.2020.09.014
  • Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer. 2022;22(4):239–252. doi:10.1038/s41568-022-00444-7
  • Tong X, Tang R, Xu J, et al. Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther. 2022;7(1):221. doi:10.1038/s41392-022-01076-x
  • Gusyatiner O, Hegi ME. Glioma epigenetics: from subclassification to novel treatment options. Semin Cancer Biol. 2018;51:50–58. doi:10.1016/j.semcancer.2017.11.010
  • Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: current management and future application. Cancer Lett. 2020;476:1–12. doi:10.1016/j.canlet.2020.02.002
  • Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro Oncol. 2022;24(Suppl 5):v1–v95. doi:10.1093/neuonc/noac202
  • Nicholson JG, Fine HA. Diffuse Glioma Heterogeneity and Its Therapeutic Implications. Cancer Discov. 2021;11(3):575–590. doi:10.1158/2159-8290.CD-20-1474
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(D1):D991–5. doi:10.1093/nar/gks1193
  • Goldman MJ, Craft B, Hastie M, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–678. doi:10.1038/s41587-020-0546-8
  • Tran TO, Vo TH, Lam LHT, Le NQK. ALDH2 as a potential stem cell-related biomarker in lung adenocarcinoma: comprehensive multi-omics analysis. Comput Struct Biotechnol J. 2023;21:1921–1929. doi:10.1016/j.csbj.2023.02.045
  • Dang HH, Hdk T, Nguyen TTT, et al. Prospective role and immunotherapeutic targets of sideroflexin protein family in lung adenocarcinoma: evidence from bioinformatics validation. Funct Integr Genomics. 2022;22(5):1057–1072. doi:10.1007/s10142-022-00883-3
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47. doi:10.1093/nar/gkv007
  • Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–1573. doi:10.1093/bioinformatics/btq170
  • Wang W, Lu Z, Wang M, et al. The cuproptosis-related signature associated with the tumor environment and prognosis of patients with glioma. Front Immunol. 2022;13:998236. doi:10.3389/fimmu.2022.998236
  • Li G, Wu Z, Gu J, et al. Metabolic Signature-Based Subtypes May Pave Novel Ways for Low-Grade Glioma Prognosis and Therapy. Front Cell Dev Biol. 2021;9:755776. doi:10.3389/fcell.2021.755776
  • Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol. 2018;1711:243–259.
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457. doi:10.1038/nmeth.3337
  • Cai D, Liu Z, Lippincott-Schwartz J. Biomolecular Condensates and Their Links to Cancer Progression. Trends Biochem Sci. 2021;46(7):535–549. doi:10.1016/j.tibs.2021.01.002
  • Xia S, Chen Z, Shen C, Fu TM. Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Protein Cell. 2021;12(9):680–694. doi:10.1007/s13238-021-00839-6
  • Meng F, Yu Z, Zhang D, et al. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell. 2021;81(20):4147–4164.e7. doi:10.1016/j.molcel.2021.07.040
  • Ning L, Zhao G, Xie C, et al. Development and Validation of a Liquid-Liquid Phase Separation-Related Gene Signature as Prognostic Biomarker for Low-Grade Gliomas. Dis Markers. 2022;2022:1487165. doi:10.1155/2022/1487165
  • Zheng J, Wu Z, Qiu Y, Wang X, Jiang X. An integrative multi-omics analysis based on liquid-liquid phase separation delineates distinct subtypes of lower-grade glioma and identifies a prognostic signature. J Transl Med. 2022;20(1):55. doi:10.1186/s12967-022-03266-1
  • Zeng WJ, Lu C, Shi Y, et al. Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochim Biophys Acta Mol Cell Res. 2020;1867(10):118795. doi:10.1016/j.bbamcr.2020.118795
  • Gao Y, Jiang M, Guo F, et al. A novel lncRNA MTAR1 promotes cancer development through IGF2BPs mediated post-transcriptional regulation of c-MYC. Oncogene. 2022;41(42):4736–4753. doi:10.1038/s41388-022-02464-x
  • Han MZ, Xu R, Xu YY, et al. TAGLN2 is a candidate prognostic biomarker promoting tumorigenesis in human gliomas. J Exp Clin Cancer Res. 2017;36(1):155. doi:10.1186/s13046-017-0619-9
  • Zhang X, Han J, Fan D, et al. Lysine-40 succinylation of TAGLN2 induces glioma angiogenesis and tumor growth through regulating TMSB4X. Cancer Gene Ther. 2023;30(1):172–181. doi:10.1038/s41417-022-00534-6
  • Ye T, Chen R, Zhou Y, et al. Salvianolic acid A (Sal A) suppresses malignant progression of glioma and enhances temozolomide (TMZ) sensitivity via repressing transgelin-2 (TAGLN2) mediated phosphatidylinositol-3-kinase (PI3K) / protein kinase B (Akt) pathway. Bioengineered. 2022;13(5):11646–11655. doi:10.1080/21655979.2022.2070963
  • Dias CM, Punetha J, Zheng C, et al. Homozygous Missense Variants in NTNG2, Encoding a Presynaptic Netrin-G2 Adhesion Protein, Lead to a Distinct Neurodevelopmental Disorder. Am J Hum Genet. 2019;105(5):1048–1056. doi:10.1016/j.ajhg.2019.09.025
  • Hao W, Yu M, Lin J, et al. The pan-cancer landscape of netrin family reveals potential oncogenic biomarkers. Sci Rep. 2020;10(1):5224. doi:10.1038/s41598-020-62117-5
  • Shao W, Zhao H, Zhang S, et al. A pan-cancer landscape of IGF2BPs and their association with prognosis, stemness and tumor immune microenvironment. Front Oncol. 2022;12:1049183. doi:10.3389/fonc.2022.1049183
  • Li H, Wang D, Yi B, et al. SUMOylation of IGF2BP2 promotes vasculogenic mimicry of glioma via regulating OIP5-AS1/miR-495-3p axis. Int J Bio Sci. 2021;17(11):2912–2930. doi:10.7150/ijbs.58035
  • Han J, Yu X, Wang S, et al. IGF2BP2 Induces U251 Glioblastoma Cell Chemoresistance by Inhibiting FOXO1-Mediated PID1 Expression Through Stabilizing lncRNA DANCR. Front Cell Dev Biol. 2021;9:659228. doi:10.3389/fcell.2021.659228
  • Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019;79(18):4557–4566. doi:10.1158/0008-5472.CAN-18-3962
  • Chen R, Wu W, Liu T, et al. Large-scale bulk RNA-seq analysis defines immune evasion mechanism related to mast cell in gliomas. Front Immunol. 2022;13:914001. doi:10.3389/fimmu.2022.914001
  • Attarha S, Roy A, Westermark B, Tchougounova E. Mast cells modulate proliferation, migration and stemness of glioma cells through downregulation of GSK3β expression and inhibition of STAT3 activation. Cell Signal. 2017;37:81–92. doi:10.1016/j.cellsig.2017.06.004