184
Views
0
CrossRef citations to date
0
Altmetric
Review

The relationship between biodiversity and disease transmission risk

, &
Pages 9-20 | Published online: 25 Mar 2015

References

  • Costanza R, Mageau M. What is a healthy ecosystem? Aquat Ecol. 1999;33:105–115.
  • United Nations. Convention on Biological Diversity; 1992. Available from: http://www.cbd.int/convention/text/default.shtml. Accessed July 27, 2014.
  • Ostfeld R, Keesing F. Effects of host diversity on infectious disease. Annu Rev Ecol Evol Syst. 2012;43:157–182.
  • Mace GM, Norris K, Fitter AH. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol. 2012;27:19–26.
  • Soliveres S, Smit C, Maestre FT. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75:3–35.
  • Mouritsen KN, Poulin R. Parasitism as a determinant of community structure on intertidial flats. Mar Biol. 2010;157:201–213.
  • Knops JHM, Tilman D, Haddad NM, et al. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett. 1999;2:286–293.
  • Sehgal RN. Biodiversity loss affects global disease ecology. Bioscience. 2009;59:945–954.
  • Thomas F, Renaud F, de Meeûs T, Poulin R. Manipulation of host behaviour by parasites: ecosystem engineering in the intertidal zone? Proc R Soc Lond B. 1998;265:1091–1096.
  • Mouritsen KN, Poulin R. Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology. 2002;124:101–117.
  • Kuris AM, Hechinger RF, Shaw JC, et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature. 2008;454:515–518.
  • Sala OE, Meyerson LA, Parmesan C. Changes in biodiversity and their consequences for human health. In: Sala OE, Meyerson LA, Parmesan C, editors. Biodiversity Change and Human Health: From Ecosystem Changes to Spread of Disease. Washington: Island Press; 2012:1–7.
  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM. The future of biodiversity. Science. 1995;269:1466–1474.
  • Huynen MM, Martens P, De Groot RS. Linkages between biodiversity loss and human health: a global indicator analysis. Int J Environ Health Res. 2004;14:13–30.
  • Miller JR. Biodiversity conservation and the extinction of experience. Trends Ecol Evol. 2005;20:430–434.
  • Ostfeld R, Keesing F. Biodiversity and disease risk: the case of Lyme disease. Conserv Biol. 2000;14:722–728.
  • Ostfeld R, Keesing F. The function of biodiversity in the ecology of vector-borne zoonotic diseases. Can J Zool. 2000;78:2061–2078.
  • Enzenwa VO, Godsey MS, King RJ, Guptill SC. Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc Biol Sci. 2006;273:109–117.
  • Keesing F, Belden LK, Daszak P, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–652.
  • Lyme Disease. Centers for Disease Control and Prevention. Available from: http://www.cdc.gov/lyme/stats/humanCases.html. Accessed October 7, 2014.
  • Ostfeld RS, Jones CG, Wolff JO. Of mice and mast. Bioscience. 1996;46:323–330.
  • Mather TN.. The dynamics of spirochete transmission between ticks and vertebrates. In: Ginsberg HS, editor. Ecology and Environmental Management of Lyme Disease. New Brunswick: Rutgers University Press; 1993:43–60.
  • Van Buskirk J, Ostfeld RS. Controlling Lyme disease by modifying the density and species composition of tick hosts. Ecol Appl. 1995;5:1133–1140.
  • Van Buskirk J, Ostfeld RS. Habitat heterogeneity, dispersal, and local risk of exposure to Lyme disease. Ecol Appl. 1998;8:365–378.
  • Schmidt KA, Ostfeld RS, Schauber EM. Infestation of Peromyscus leucopus and Tamias striatus by the black-legged tick Ixodes scapularis (Acari: Ixodidae), in relation to the abundance of hosts and parasites. J Med Entomol. 1999;36:749–757.
  • Schmidt KA, Ostfeld RS. Biodiversity and the dilution effect in disease ecology. Ecology. 2001;82:609–619.
  • Allan BF, Keesing F, Ostfeld RS. Effect of forest fragmentation on Lyme disease risk. Conserv Biol. 2003;17:267–272.
  • LoGuidice K, Ostfeld RS, Schmidt KA, Keesing F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci U S A. 2003;100:567–571.
  • Ogden NH, Tsao JI. Biodiversity and Lyme disease: dilution or amplification? Epidemics. 2009;1:196–206.
  • Brisson D, Dykhuizen DE, Ostfeld RS. Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proc Biol Sci. 2008;275:227–235.
  • Gray JS. The ecology of ticks transmitting Lyme borreliosis. Exp Appl Acarol. 1998;22:249–258.
  • Wilson ML, Adler G, Spielman A. Correlation between abundance of deer and that of the deer tick, Ixodes dammini (Acari: Ixodidae). Ann Entomol Soc Am. 1985;78:172–176.
  • Duffy DC, Campbell SR, Clark D, DiMotta C, Gurney S. Ixodes scapularis (Acari: Ixodidae) deer tick mesoscale populations in natural areas: effects of deer, area and location. J Med Entomol. 1994;31:152–158.
  • Steere AC. Lyme disease. N Engl J Med. 1989;321:586–596.
  • Sigal LH, Curran AS. Lyme disease: a multifocal worldwide epidemic. Annu Rev Public Health. 1991;12:85–109.
  • Piesmann J. Ecology of Borrelia burgdorferi sensu lato in North America. In: Gray J, Kahl O, Stanek G, editors. Lyme Borreliosis: Biology, Epidemiology and Control. Oxon, NY: CABI; 2002:223–249.
  • Rand PW, Lubelczyk C, Holman MS, Lacombe EH, Smith RP Jr. Abundance of Ixodes scapularis (Acari: Ixodidae) after the complete removal of deer from an isolated offshore island, endemic for Lyme disease. J Med Entomol. 2004;41:779–784.
  • Levi T, Kilpatrick AM, Mangel M, Wilmers CC. Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci U S A. 2012;109:10942–10947.
  • Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011;2:123–128.
  • Stanek G, Reiter M. The expanding Lyme Borrelia complex – clinical significance of genomic species? Clin Microbiol Infect. 2011;17:487–493.
  • Hovius JWR, van Dam AP, Fikrig E. Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol. 2007;23:434–438.
  • Strle F, Stanek G. Clinical manifestations and diagnosis of Lyme borreliosis. In: Lipsker D, Jaulhac B, editors. Lyme Borreliosis: Biological and Clinical Aspects. Basel: Karger-Verlag; 2009:51–110.
  • Humair P-F, Rais O, Gern L. Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitology. 1999;118:33–42.
  • Kurtenbach K, Hanincova K, Tsao JI, Margos G, Fish D, Ogden NH. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol. 2006;4:660–669.
  • Hanincová K, Taragelová V, Koci J, et al. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol. 2003;69:2825–2830.
  • Gern L. Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis: life in the wild. Parasite. 2008;15:244–247.
  • Pfäffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases. Int J Parasitol. 2013;43:1059–1077.
  • Gern L, Humair P-F. Ecology of Borrelia burgdorferi sensu lato in Europe. In: Kahl O, Gray JS, Lane RS, Stanek G, editors. Lyme Borreliosis: Biology, Epidemiology and Control. Oxford: CABI Publishing; 2002:149–174.
  • Gern L. The biology of Ixodes ricinus. Ther Umsch. 2005;62:707–712.
  • Jensen TS. Seed-seed predator interactions of European beech, Fagus silvatica and forest rodents, Clethrionomys glareolus and Apodemus flavicollis. Oikos. 1985;44:149–156.
  • Humair P-F, Turrian N, Aeschlimann A, Gern L. Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals. Folia Parasitol. 1993;40:65–70.
  • Dizij A, Kurtenbach K. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol. 1995;17:177–183.
  • Kurtenbach K, Dizij A, Seitz HM, et al. Differential immune responses to Borrelia burgdorferi in European wild rodent species influence spirochete transmission to Ixodes ricinus L. (Acari: lxodidae). Infect Immun. 1994;62:5344–5352.
  • Craine N, Randolph SE, Nuttall PA. Seasonal variations in the role of grey squirrels as hosts of Ixodes ricinus, the tick vector of Lyme disease spirochaete, in a British woodland. Folia Parasitol. 1995;42:73–80.
  • Gern L, Toutoungi LN, Chang MH, Aeschlimann A. Ixodes (Pholeoixodes) hexagonus, an efficient vector of Borrelia burgdorferi in the laboratory. Med Vet Entomol. 1991;5:431–435.
  • Gern L, Rouvinez E, Toutoungi LN, Godfroid E. Transmission cycles of Borrelia burgdorferi sensu lato involving Ixodes ricinus and/or I. hexagonus ticks in the European hedgehog, Erinacues europaeus, in suburban and urban areas in Switzerland. Folia Parasitol (Praha). 1997;44:309–314.
  • Skuballa J, Oehme R, Hartelt K, et al. European hedgehogs as hosts for Borrelia spp., Germany. Emerg Infect Dis. 2007;13:952–953.
  • Skuballa J, Petney T, Pfäffle M, et al. Occurence of different Borrelia burgdorferi sensu lato species including B. afzelii, B. bavariensis and B. spielmanii in hedgehogs (Erinaceus spp.) in Europe. Ticks Tick Borne Dis. 2012;3:8–13.
  • Matuschka FR, Heiler M, Eiffert H, Fischer P, Lotter H, Spielman A. Diversionary role of hoofed game in the transmission of Lyme disease spirochetes. Am J Trop Med Hyg. 1993;48:693–699.
  • Gern L, Estrada-Peña A, Frandsen F, et al. European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralbl Bakteriol. 1998;287:196–204.
  • Léger E, Vourc’h G, Vial L, Chevillon C, McCoy KD. Changing distributions of ticks: causes and consequences. Exp Appl Acarol. 2013;59:219–244.
  • Kramer LD, Li J, Shi P-Y. West Nile virus. Lancet Neurol. 2007;6:171–181.
  • Godsey MS Jr, Nasci R, Savage HM, et al. West Nile virus-infected mosquitoes, Louisianna, 2002. Emerg Infect Dis. 2005;11:1399–1404.
  • Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ. West Nile virus. Lancet Infect Dis. 2002;2:519–529.
  • Trevejo RT, Eidson M. West Nile virus. J Am Vet Med Assoc. 2008;232:1302–1309.
  • Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean Basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis. 2004;23:147–156.
  • Georges AJ, Lesbordes JL, Georges-Courbot MC, Meunier DMY, Gonzalez JP. Fatal hepatitis from West Nile virus. Ann Inst Pasteur Virol. 1987;138:237–244.
  • Ahmed S, Libman R, Wesson K, Ahmed F, Einberg K. Guillain–Barré syndrome: an unusual presentation of West Nile virus infection. Neurology. 2000;55:144–146.
  • Samspon BA, Ambrosi C, Charlot A, Reiber K, Veress JF, Armbrustmacher V. The pathology of human West Nile virus infection. Hum Pathol. 2000;31:527–531.
  • Weinberger M, Pitlik SD, Gandacu D, et al. West Nile fever outbreak, Israel, 2000: epidemiological aspects. Emerg Infect Dis. 2001;7:686–691.
  • Burt FJ, Grobbelaar AA, Leman PA, Anthony FS, Gibson GVF, Swanepoel R. Phylogenetic relationships of southern African West Nile virus isolates. Emerg Infect Dis. 2002;8:820–826.
  • Klein C, Kimiagar I, Pollak L, et al. Neurological features of West Nile virus infection during the 2000 outbreak in a regional hospital in Israel. J Neurol Sci. 2002;200:63–66.
  • Leis AA, Stokic DS, Polk JL, Dostrow V, Winkelmann M. A poliomyelitis-like syndrome from West Nile virus infection. N Engl J Med. 2002;347:1279–1280.
  • Smithburn KC, Hughes TP, Burke AW, Paul JH. A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg. 1940;20:471–472.
  • Hayes CG. West Nile virus: Uganda 1937, to New York City, 1999. Ann N Y Acad Sci. 2001;951:25–37.
  • Petersen LR, Roehrig JT. West Nile virus: a reemerging global pathogen. Rev Biomed. 2001;12:208–216.
  • Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL. Epidemiology and transmission dynamics of West Nile virus. Emerg Infect Dis. 2005;11:1167–1173.
  • Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli AP, Hudson PJ. Empirical evidence for key hosts in persistence of a tick-borne disease. Int J Parasitol. 2003;33:909–917.
  • Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438:355–359.
  • Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD. Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci. 2006;273:2327–2333.
  • Komar N, Panella NA, Burns JE, Dusza SW, Mascarenhas TM, Talbot TO. Serologic evidence for West Nile virus infection in birds in the New York city vicinity during an outbreak in 1999. Emerg Infect Dis. 2001;7:621–625.
  • Garvin MC, Tarvin KA, Smith J, Ohajuruka OA, Grimes S. Patterns of West Nile virus infection in Ohio blue jays: implications for initiation of the annual cycle. Am J Trop Med Hyg. 2004;70:566–570.
  • Swaddle JP, Calos SE. Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS One. 2008;3(6):e2488. doi: 10.1371/journal.pone.0002488.
  • Allan BF, Langerhans RB, Ryberg WA, et al. Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia. 2009;158:699–708.
  • Bi Z, Formenty PBH, Roth CE. Hantavirus Infection: a review and global update. J Infect Dev Ctries. 2008;2:3–23.
  • Dearing MD, Dizney L. Ecology of hantavirus in a changing world. Ann N Y Acad Sci. 2010;1195:99–112.
  • Lee HW.. Epidemiology and pathogenesis of haemorrhagic fever with renal syndrome. In: Elliot RM, editor. The Bunyaviridae. New York: Plenum Press; 1996:253–267.
  • Lednicky JA. Hantavirus: a short review. Arch Pathol Lab Med. 2003;127:30–35.
  • Yanagihara R, Amyx HL, Gajdusek DC. Experimental infection with Puumala virus, the etiologic agent of nephropathia epidemica, in bank voles (Clethrionomys glareolus). J Virol. 1985;55:34–38.
  • Gavrilovskaya IN, Apekina NS, Bernstehin AD, et al. Pathogenesis of hemorrhagic fever with renal syndrome virus infection and mode of horizontal transmission of hantavirus in bank voles. In: Calisher CH, editor. Hemorrhagic Fever with Renal Syndrome, Tick- and Mosquito-Borne Viruses. Vienna: Springer; 1991:57–62.
  • Kariwa H, Fujiki M, Yoshimatsu K, Arikawa J, Takashima I, Hashimoto N. Urine-associated horizontal transmission of Seoul virus among rats. Arch Virol. 1998;143:15–24.
  • Bernshtein AD, Apekina NS, Mikhailova TV, et al. Dynamics of Puumala hantavirus infection in naturally infected bank voles (Clethrinomys glareolus). Arch Virol. 1999;144:2415–2428.
  • Peixoto ID, Abramson G. The effect of biodiversity on the hantavirus epizootic. Ecology. 2006;87:873–879.
  • Dizney L, Ruedas LA. Increased host species diversity and decreased prevalence of Sin Nombre Virus. Emerg Infect Dis. 2009;15:1012–1018.
  • Carver S, Kuenzi A, Bagamian KH, et al. A temporal dilution effect: hantavirus infection in deer mice and the intermittent presence of voles in Montana. Oecologia. 2011;166:713–721.
  • Orrock JL, Allan BF, Drost CA. Biogeographic and ecological regulation of disease: prevalence of Sin Nombre Virus in island mice is related to island area, precipitation, and predator richness. Am Nat. 2011;177:691–697.
  • Suzán G, Marcé E, Giermakowski JT, et al. Experimental evidence for reduced rodent diversity causing increased hantavirus prevalence. PLoS One. 2009;4(5):e5461. doi: 10.1371/journal.pone.0005461.
  • Suzan G, Armien A, Mills JN, et al. Epidemiological considerations of rodent community composition in fragmented landscapes in Panama. J Mammal. 2008;89:684–690.
  • Ruedas LA, Salazar-Bravo J, Tinnin DS, et al. Community ecology of small mammal populations in Panamá following an outbreak of hantavirus pulmonary syndrome. J Vector Ecol. 2004;29:177–191.
  • Tersago K, Verhagen R, Vapalathi O, Heyman P, Ducoffre G, Leirs H. Hantavirus outbreak in Western Europe: reservoir host infection dynamics related to human disease patterns. Epidemiol Infect. 2011;139:381–390.
  • Tersago K, Schreurs A, Linard C, Verhagen R, Van Dongen S, Leirs H. Population, environmental, and community effects on local bank vole (Myodes glareolus) Puumala virus infection in an area with low human incidence. Vector Borne Zoonotic Dis. 2008;8:235–244.
  • Fenwick A. The global burden of neglected tropical diseases. Public Health. 2014;126:233–236.
  • Johnson PTJ, Lund PJ, Hartson RB, Yoshino TP. Community diversity reduces Schistosoma mansoni transmission, host pathology and human infection risk. Proc Biol Sci. 2009;276:1657–1663.
  • Combes C, Moné H. Possible mechanisms of the decoy effect in Schistosoma mansoni transmission. Int J Parasitol. 1987;17:971–975.
  • Johnson PTJ, Lunde KB, Ritchie EG, Launer AE. The effect of trematode infection on amphibian limb development and survivorship. Science. 1999;284:802–804.
  • Johnson PTJ, Sutherland DR. Amphibian deformities and Ribeiroia infection: an emerging helminthiasis. Trends Parasitol. 2003;19:332–335.
  • Johnson PTJ, Lunde KB, Haight RW, Bowerman J, Blaustein AR. Ribeiroia ondatrae (Trematoda: Digenea) infection induces severe limb malformations in western toads (Bufo boreas). Can J Zool. 2001;79:370–379.
  • Johnson PTJ, Lunde KB, Thurman EM, et al. Parasite (Ribeiroia ondatrae) infection linked to amphibian malformations in the western United States. Ecol Monogr. 2002;72:151–168.
  • Johnson PTJ, Hartson RB, Larson DJ, Sutherland DR. Diversity and disease: community structure drives parasite transmission and host fitness. Ecol Lett. 2008;11:1017–1026.
  • Orlofske SA, Jadin RC, Preston DL, Johnson PT. Parasite transmission in complex communities: predators and alternative hosts alter pathogenic infections in amphibians. Ecology. 2012;93:1247–1253.
  • Piotrowski JS, Annis SL, Longcore JE. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia. 2004;96:9–15.
  • Searle CL, Biga LM, Spatafora JW, Blaustein AR. A dilution effect in the emerging amphibian pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci U S A. 2011;108:16322–16326.
  • Hall SR, Sivars-Becker L, Becker C, Duffy MA, Tessier AJ, Caceres CE. Eating yourself sick: transmission of disease as a function of foraging ecology. Ecol Lett. 2007;10:207–218.
  • Leibold MA, Tessier AJ. Habitat partitioning by zooplankton and the structure of lake ecosystems. In: Streit B, Städler T, Lively CM, editors. Evolutionary Ecology of Freshwater Animals. Basel: Birkhäuser Verlag; 1997:3–30.
  • Hall SR, Becker CR, Simonis JL, Duffy MA, Tessier AJ, Caceres CE. Friendly competition: evidence for a dilution effect among competitors in a planktonic host-parasite system. Ecology. 2009;90:791–801.
  • Robbin LL, Barker IK, Surgeoner GA, McEwen SA, Gillespie TJ, Addison EM. Survival and development of the different life stages of Ixodes scapularis (Acari: Ixodidae) held within four habitats on long point, Ontario, Canada. J Med Entomol. 1998;35:189–199.
  • Randolph SE, Green RM, Hoodless AN, Peacey MF. An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol. 2002;32:979–989.
  • Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 2006;4(6):e145. doi: 10.1371/journal.pbio.0040145.
  • Paz S, Semenza JC. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia – a review. Int J Environ Res Public Health. 2013;10:3543–3562.